Target Specificity (target + specificity)

Distribution by Scientific Domains


Selected Abstracts


Inhibitors of plant invertases do not affect the structurally related enzymes of fructan metabolism

NEW PHYTOLOGIST, Issue 3 2009
Ute Kusch
Summary ,,Plant fructan active enzymes (FAZYs), including the enzymes involved in inulin metabolism, namely sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100) and fructan 1-exohydrolase (1-FEH; EC 3.2.1.153), are evolutionarily related to acid invertases (AIs), that is, plant cell wall invertase (CWI) and vacuolar invertase (VI). Acid invertases are post-translationally controlled by proteinaceous inhibitors. Whether FAZYs are subject to similar controls is not known. ,,To probe their possible interactions with invertase inhibitors, we transiently expressed chicory (Cichorium intybus) FAZYs, as well as several previously characterized invertase inhibitors from nonfructan species, and the C. intybus cell wall/vacuolar inhibitor of fructosidase (CiC/VIF), a putative invertase inhibitor of a fructan-accumulating plant, in leaves of Nicotiana benthamiana. ,,Leaf extracts containing recombinant, enzymatically active FAZYs were used to explore the interaction with invertase inhibitors. Neither heterologous inhibitors nor CiC/VIF affected FAZY activities. CiC/VIF was confirmed as an AI inhibitor with a stronger effect on CWI than on VI. Its expression in planta was developmentally regulated (high in taproots, and undetectable in leaves and flowers). In agreement with its target specificities, CiC/VIF was associated with the cell wall. ,,It is concluded that subtle structural differences between AIs and FAZYs result in pronounced selectivity of inhibitor action. [source]


Forked end: a novel transmembrane protein involved in neuromuscular specificity in drosophila identified by gain-of-function screening

DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2002
Takeshi Umemiya
Abstract The Drosophila neuromuscular connectivity provides an excellent model system for studies on target recognition and selective synapse formation. To identify molecules involved in neuromuscular recognition, we conducted gain-of-function screening for genes whose forced expression in all muscles alters the target specificity. We report here the identification of a novel transmembrane protein, Forked end (FEND), encoded by the fend gene, by the said screening. When the FEND expression was induced in all muscles, motoneurons that normally innervate muscle 12 formed ectopic synapses on a neighboring muscle 13. The target specificity of these motoneurons was also altered in the loss-of-function mutant of fend. During embryonic development, fend mRNA was detected in a subset of cells in the central nervous system and in the periphery. These results suggest that FEND is a novel axon guidance molecule involved in neuromuscular specificity. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 205,214, 2002 [source]


Enhanced Ras activity preserves dendritic size and extension as well as synaptic contacts of neurons after functional deprivation in synRas mice

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008
A. Alpár
Abstract The monomeric GTP-binding protein p21Ras has been repeatedly implicated in neuronal stability and plastic changes of the adult nervous system. Recently, we have shown that expression of constitutively active Ras protein in transgenic synRas mice results in a significant increase in the dendritic size and complexity of differentiated pyramidal neurons as well as in increased synaptic connectivity. In the present study, we examined the organization of the vibrissae-barrel cortex in synRas mice and the effects of enhanced Ras activity on deprivation-induced dendritic reorganization after vibrissectomy. The results demonstrate a significant increase in vibrissae-barrel sizes and proportional spacing between barrels in synRas mice, suggesting that the neuronal target specificity of thalamocortical terminals is preserved. Accordingly, the arrangement of double bouquet cells at the borders of barrel columns ensuring functional distinctness is unchanged. Partial vibrissectomy is followed by significant dendritic regression of corresponding pyramidal neurons in the barrel cortex of wild-type mice, which, however, could not be observed in synRas mice. The results provide the first evidence for a role of Ras in preserving neuronal structure after functional deprivation in vivo. [source]


Differential expression of human Polycomb group proteins in various tissues and cell types

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue S36 2001
Marco J. Gunster
Abstract Polycomb group proteins are involved in the maintenance of cellular identity. As multimeric complexes they repress cell type-specific sets of target genes. One model predicts that the composition of Polycomb group complexes determines the specificity for their target genes. To study this hypothesis, we analyzed the expression of Polycomb group genes in various human tissues using Northern blotting and immunohistochemistry. We found that Polycomb group expression varies greatly among tissues and even among specific cell types within a particular tissue. Variations in mRNA expression ranged from expression of all analyzed Polycomb group genes in the heart and testis to no detectable Polycomb group expression at all in bone marrow. Furthermore, each Polycomb group gene was expressed in a different number of tissues. RING1 was expressed in practically all tissues, while HPH1 was expressed in only a few tissues. Also within one tissue the level of Polycomb group expression varied greatly. Cell type-specific Polycomb group expression patterns were observed in thyroid, pancreas, and kidney. Finally, in various developmental stages of fetal kidney, different Polycomb group expression patterns were observed. We conclude that Polycomb group expression can vary depending on the tissue, cell type, and development stage. Polycomb group complexes can only be composed of the Polycomb group proteins that are expressed. This implies that with cell type-specific Polycomb group expression patterns, cell type-specific Polycomb group complexes exist. The fact that there are cell type-specific Polycomb group targets and cell type-specific Polycomb group complexes fits well with the hypothesis that the composition of Polycomb group complexes may determine their target specificity. J. Cell. Biochem. Suppl. 36: 129,143, 2001. © 2001 Wiley-Liss, Inc. [source]


Split target specificity of ResT: a design for protein delivery, site selectivity and regulation of enzyme activity?

MOLECULAR MICROBIOLOGY, Issue 3 2007
Makkuni Jayaram
Summary The ResT telomere resolvase is responsible for maintaining the hairpin telomeres that cap the linear chromosome and minichromosomes of Borrelia burgdorferi. This enzyme acts at the tandem telomere junctions present within circular dimers resulting from DNA replication. ResT mediates the transesterification steps of resolution using a constellation of active site residues similar to that found in tyrosine recombinases and type IB topoisomerases. By combining this reaction mechanism with a hairpin binding module in its N-terminal domain, ResT reduces a fused telomere dimer into two hairpin monomers. ResT displays a split DNA binding specificity, with the N- and C-terminal domains targeting distinct regions of the telomere. This bi-specificity in binding is likely to be important in protein delivery, substrate selection and regulation of enzyme activity. [source]


A sterile-female technique proposed for control of Striga hermonthica and other intractable weeds: advantages, shortcomings and risk management

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 5 2009
Brian G Rector
Abstract Weeds have posed intractable challenges to farmers since the dawn of agriculture. This article describes in detail a proposed control strategy based on the introduction of genes conferring female sterility into the genome of an intractable target weed. Spread of these genes through target populations via pollen would be facilitated by their incorporation within active transposable elements. Advantages (e.g. self-dissemination, self-proliferation, target specificity) and shortcomings (e.g. high cost, long project incubation period, limited range of possible targets) of this strategy are discussed in depth, as are assessment and management of its attendant biological and ecological risks, such as the risk of introduced genes spreading to non-target species. The parasitic weed Striga hermonthica (Del.) Benth. is examined as a potential target. Published 2009 by John Wiley & Sons, Ltd [source]


Fifteen-year quest for microphthalmia-associated transcription factor target genes

PIGMENT CELL & MELANOMA RESEARCH, Issue 1 2010
Yann Cheli
Summary Microphthalmia-associated transcription factor (MITF) was initially shown to play a key role in melanocyte differentiation through the direct transcriptional control of TYROSINASE, TYRP1 and DCT genes, encoding the three enzymes involved in melanin synthesis or melanogenesis. Sixteen years after the first description of MITF, more than 40 direct MITF target genes have been described. They play a key role in melanocyte, osteoclast and mast cell specific functions. Furthermore, several MITF target genes, e.g. BCL2, CDK2, CDKN1A, CDKN2A, MET and HIF1A, link MITF to general cellular processes such as growth or survival. In this review, we provide an overview of the MITF-regulated genes. We pay special attention to the MITF target genes in melanocytes and raise questions about target specificity. [source]


Intrathecal pathogenic anti,aquaporin-4 antibodies in early neuromyelitis optica,

ANNALS OF NEUROLOGY, Issue 5 2009
Jeffrey L. Bennett MD
Objective The serum of most neuromyelitis optica (NMO) patients contains autoantibodies (NMO-IgGs) directed against the aquaporin-4 (AQP4) water channel located on astrocyte foot processes in the perivessel and subpial areas of the brain. Our objectives were to determine the source of central nervous system (CNS) NMO-IgGs and their role in disease pathogenesis. Methods Fluorescence-activated cell sorting and single-cell reverse transcriptase polymerase chain reaction were used to identify overrepresented plasma cell immunoglobulin (Ig) sequences in the cerebrospinal fluid (CSF) of an NMO patient after a first clinical attack. Monoclonal recombinant antibodies (rAbs) were generated from the paired heavy and light chain sequences and tested for target specificity and Fc effector function. The effect of CSF rAbs on CNS immunopathology was investigated by delivering single rAbs to rats with experimental autoimmune encephalomyelitis (EAE). Results Repertoire analysis revealed a dynamic, clonally expanded plasma cell population with features of an antigen-targeted response. Using multiple independent assays, 6 of 11 rAbs generated from CSF plasma cell clones specifically bound to AQP4. AQP4-specific rAbs recognized conformational epitopes and mediated both AQP4-directed antibody-dependent cellular cytotoxicity and complement-mediated lysis. When administered to rats with EAE, an AQP4-specific NMO CSF rAb induced NMO immunopathology: perivascular astrocyte depletion, myelinolysis, and complement and Ig deposition. Interpretation Molecular characterization of the CSF plasma cell repertoire in an early NMO patient demonstrates that AQP4-specfic Ig is synthesized intrathecally at disease onset and directly contributes to CNS pathology. AQP4 is now the first confirmed antigenic target in human demyelinating disease. Ann Neurol 2009;66:617,629 [source]


The structure of the periplasmic thiol,disulfide oxidoreductase SoxS from Paracoccus pantotrophus indicates a triple Trx/Grx/DsbC functionality in chemotrophic sulfur oxidation

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2009
Yvonne Carius
The periplasmic thiol,disulfide oxidoreductase SoxS is beneficial for the sulfur-oxidizing (Sox) phenotype of the facultative chemotrophic bacterium Paracoccus pantotrophus and is not part of the Sox enzyme system. SoxS combines features of thioredoxins, glutaredoxins and the thiol,disulfide oxidoreductases of the Dsb family in structure, target specificity and reaction. The structure of SoxS was solved in oxidized and reduced forms at 2.1 and 1.9,Å resolution, respectively. SoxS revealed high structural homology to typical cytoplasmic bacterial thioredoxins. In contrast, SoxS contained the active-site motif Pro-Gly-Cys-Leu-Tyr-Cys that is not present in other thioredoxins. Interestingly, the sequence of this motif is closely related to the Pro-Gly-Cys-Pro-Tyr-Cys sequence of some glutaredoxins and to the Pro-Xaa-Cys-Xaa-Tyr-Cys sequences of some members of the DsbC and DsbG subfamilies of thiol,disulfide oxidoreductases. Furthermore, the proposed substrate of SoxS, the interprotein disulfide of SoxY, Cys110Y,Cys110Y, is structurally similar to oxidized glutathione. However, SoxS is proposed to specifically reduce the interprotein disulfide between two SoxY subunits, releasing a heterodimeric SoxYZ as an active part of the sulfur-oxidation cycle. [source]


Crystallization of parasporin-2, a Bacillus thuringiensis crystal protein with selective cytocidal activity against human cells

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 12-2 2004
Toshihiko Akiba
Bacillus thuringiensis is a valuable source of protein toxins that are specifically effective against certain insects and worms but harmless to mammals. In contrast, a protein toxin obtained from B. thuringiensis strain A1547, designated parasporin-2, is not insecticidal but has a strong cytocidal activity against human cells with markedly divergent target specificity. The 37,kDa inactive protein is proteolytically activated to a 30,kDa active form. The active form of the recombinant protein toxin was crystallized in the presence of ethylene glycol and polyethylene glycol 8000 at neutral pH. The crystals belong to the hexagonal space group P61 or P65, with unit-cell parameters a = b = 134.37, c = 121.24,Å. Diffraction data from a native crystal were collected to 2.75,Å resolution using a synchrotron-radiation source. [source]


Rats dying for mice: Modelling the competitor release effect

AUSTRAL ECOLOGY, Issue 8 2007
STÉPHANE CAUT
Abstract Introduced vertebrate predators are one of the most important threats to endemic species throughout a range of ecosystems, in particular on islands in biodiversity hot spots. Consequently, the reduction of predator numbers is considered a key conservation action in the management of many native vertebrates vulnerable to predators. It is now established that control attempts may affect non-target species through trophic interactions, but little is known concerning their consequences on competitive relationships. We study a mathematical model mimicking the effects of controlling introduced species in the presence of their competitors. We used two competing rodents to illustrate our study: black rats, Rattus rattus, and mice, Mus musculus. Analyses of the model show that control of only one introduced species logically results in the dramatic increase of the overlooked competitor. We present empirical data that confirm our theoretical predictions. Less intuitively, this process, which we term ,the competitor release effect', may also occur when both introduced competitors are simultaneously controlled. In our setting, controlling both predators can promote their coexistence. This occurs as soon as the inferior competitor benefits from the differential effect of the simultaneous control of both competitors, that is, when the indirect positive effect of control (the removal of their competitors) exceeds its direct negative effect (their own removal). Both control levels and target specificity have a direct influence on the extent of this process: counter-intuitively, the stronger and more specific the control, the greater the effect. The theoretical validation of the competitor release effect has important implications in conservation, especially for control management. [source]


Extended Target Sequence Specificity of PNA,Minor-Groove Binder Conjugates

CHEMBIOCHEM, Issue 1 2005
Peter E. Nielsen Prof.
,Conjugal bliss. We show that a peptide nucleic acid,Hoechst conjugate (see scheme) kinetically and sequence preferentially guides the PNA moiety to target a binding site proximal to an A,T region that has an affinity for the minor-groove binder. These results demonstrate a new strategy for constructing DNA recognition ligands composed of a sequence-guiding domain that increases the target specificity and a DNA-modification domain that determines the biological activity of the conjugate. [source]