Target Plate (target + plate)

Distribution by Scientific Domains


Selected Abstracts


Facilitating the hyphenation of CIEF and MALDI-MS for two-dimensional separation of proteins

ELECTROPHORESIS, Issue 15 2010
Chang Cheng
Abstract Both CIEF and MALDI-MS are frequently used in protein analysis, but hyphenation of the two has not been investigated proportionally. One of the major reasons is that the additives (such as carrier ampholytes and detergent) in CIEF severely suppress the MALDI-MS signal, which hampers the hyphenation of the two. In this paper, we develop a simple means to alleviate the above signal-suppressing effect. We first deposit 1,,L of water onto a MALDI-MS target, deliver a fraction of CIEF-separated protein (,0.1,,L) to the water droplet, evaporate the solvent, add 0.5,,L of MALDI matrix to the sample spot, dry the matrix and move the target plate to a MALDI-TOF-MS for mass spectrum measurement. We optimize the droplet volume and the laser-ablation region. Under the optimized conditions, we improve the S/N by two- to tenfold. We also apply this method for 2-D separations of standard proteins and apolipoprotein A,I, a membrane protein expressed in Escherichia coli cells. [source]


Microstructures and adiabatic shear bands formed by ballistic impact in steels and tungsten alloy

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 12 2003
Z. Q. DUAN
ABSTRACT Projectiles of sintered tungsten alloy were fired directly at two kinds of steel target plates. The microstructures near the perforation of a medium, 0.45% carbon steel target plate can be identified along the radial direction as: melted and rapidly solidified layer, recrystallized fine-grained layer, deformed fine-grained layer, deformed layer and normal matrix. The adiabatic shear bands cannot be found in this intermediate strength steel. The microstructures along the radial direction of perforation of 30CrMnMo steel target plate are different from that of the medium carbon steel. There was a melted and rapidly solidified layer on the surface of the perforation, underneath there was a diffusing layer, and then fine-grained layer appeared as streamlines. Several kinds of adiabatic shear bands were found in this higher strength steel; they had different directions and widths, which were relative to the shock waves, as well as the complex deformation process of penetration. The deformation of the projectiles was rather different when they impacted on target plates of medium carbon steel and 30CrMnMo steel. The projectile that impacted on the medium carbon steel target plate was tamped and its energy dissipated slowly, while that which impacted on the 30CrMnMo steel target plate was sheared and the energy dissipated quickly. [source]


Effect of tabs on impinging heat transfer

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 7 2001
Munehiko Hiwada
Abstract The present work experimentally investigates the effect of vortex generators, in the form of small tabs projecting normally into the flow at the nozzle exit, on the fluid flow and heat transfer characteristics of an axisymmetric impinging air jet in the subcritical Reynolds number range. With this comes the expectation of a large eddy structure variation and the possibility of active control. Local heat transfer and static pressure were measured on a target plate for a round air jet issuing from a circular nozzle with rectangular tabs whose numbers and lengths changed at a constant nozzle-to-plate gap (L/d = 8) and jet Reynolds number (Re = 34,000). The main results are the following: When two tabs were set at the exit of the circular nozzle, Cpw and Nu profiles flatten in the direction of the tab setting. In the case of three tabs, however, among both Cpw and Nu profiles a concentric profile is found, as well as in the case without any tabs. © 2001 Scripta Technica, Heat Trans Asian Res, 30(7): 561,570, 2001 [source]


Evaluation of a new matrix-free laser desorption/ionization method through statistic studies: comparison of the DIAMS (desorption/ionization on self-assembled monolayer surface) method with the MALDI and TGFA-LDI techniques

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 12 2008
Matthieu Bounichou
Abstract This work demonstrates that the desorption/ionization on self-assembled monolayer surface (DIAMS) mass spectrometry, a recent matrix-free laser desorption/ionization (LDI) method based on an organic target plate, is as statistically repeatable and reproducible as matrix assisted laser desorption ionization (MALDI) and thin gold film-assisted laser desorption/ionization (TGFA-LDI) mass spectrometries. On lipophilic DIAMS of target plates with a mixture of glycerides, repeatability/reproducibility has been estimated at 15 and 30% and the relative detection limit has been evaluated at 0.3 and 3 pmol, with and without NaI respectively. Salicylic acid and its d6 -isomer analysis confirm the applicability of the DIAMS method in the detection of compounds of low molecular weight. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Capillary electrophoretic separation and fractionation of hydrophobic peptides onto a pre-structured matrix assisted laser desorption/ionization target for mass spectrometric analysis

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 2 2006
Johan Jacksén
Abstract A CE separation of hydrophobic peptides followed by fractionation onto a prestructured MALDI target and off-line MS analysis was performed. An improved and partially automated manufacturing procedure of the previously described MALDI target is presented. This target is structurally coated with silicone and especially developed for hydrophobic peptides and proteins. Here, the target plate was designed specifically for the CE fraction collection. Different solvents were evaluated to meet the requirements of peptide solubility and compatibility to both the CE and MALDI methods and to the fractionation procedure. CE-MALDI-MS analysis of nine highly hydrophobic peptides from cyanogen bromide-digested bacteriorhodopsin is demonstrated. [source]


On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 22 2009
Jia Tang
Abstract In this study, an on-plate-selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless-steel plate, then modified with 4-mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI-MS simply by deposition of 2,5-dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on-plate strategy promising for online enrichment of glycopeptides, which could be applied in high-throughput proteome research. [source]


Closely spaced external standard: a universal method of achieving 5 ppm mass accuracy over the entire MALDI plate in axial matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 19 2003
Eugene Moskovets
Close deposition of the sample and external standard was used in axial matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to achieve mass accuracy equivalent to that obtained with an internal standard across the entire MALDI plate. In this work, the sample and external standard were deposited by continuous deposition in separate traces, each approximately 200,,m wide. The dependence of the mass accuracy on the distance between the sample and standard traces was determined across a MALDI target plate with dimensions of 57.5,mm,×,57.0,mm by varying the gap between the traces from 100,,m to 4,mm. During acquisition, two adjacent traces were alternately irradiated with a 200-Hz laser, such that the peaks in the resulting mass spectra combined the sample and external standard. Ion suppression was not observed even when the peptide concentrations in the two traces differed by more than two orders of magnitude. The five peaks from the external standard trace were used in a four-term mass calibration of the masses of the sample trace. The average accuracy across the whole plate with this method was 5,ppm when peaks of the sample trace had signal-to-noise ratios of at least 30 and the gap between the traces was approximately 100,,m. This approach was applied to determining peptide masses of a reversed-phase liquid chromatographic (LC) separation of a tryptic digest of , -galactosidase deposited as a long serpentine trace across the MALDI plate, with accuracy comparable to that obtainable using internal calibration. In addition, the eluent from reversed-phase LC separation of a strong cation-exchange fraction containing tryptic peptides from a yeast lysate along with the closely placed external standard was deposited on the MALDI plate. The data obtained in the MS and MS/MS modes on a MALDI-TOF/TOF mass spectrometer were combined and used in database searching with MASCOT. Since the significant score is a function of mass accuracy in the MS mode, database searching with high mass accuracy reduced the number of false positives and also added peptides which otherwise would have been eliminated at lower mass accuracy (false negatives). Copyright © 2003 John Wiley & Sons, Ltd. [source]


A combined ion source for fast switching between electrospray and matrix-assisted laser desorption/ionization in Fourier transform ion cyclotron resonance mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 17 2002
Gökhan Baykut
A new ion source has been developed for Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) that enables quick changes between matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) modes. When operating as an ESI source, the sample solution is sprayed through an angled nebulizer. The generated ions pass through a glass capillary followed by a skimmer and three sequential hexapole ion guides. Ions can be accumulated in the third hexapole (storage hexapole) before they are injected into the ICR trap. The second hexapole is mounted on a movable platform which also carries the MALDI sample plate. During the switch from ESI to MALDI, this platform moves the second hexapole out of the hexapole series and locates a MALDI sample plate with 384 sample positions into the area directly in front of the storage hexapole. The storage hexapole is in a medium pressure chamber (MPC) which has windows both for the incoming laser beam and for the observation optics, as well as a gas tube for pulsing collision gas into the chamber. During the MALDI operation the focused laser beam enters the MPC, passes between the hexapole rods and irradiates a MALDI sample on the target plate. The sample molecules are desorbed/ionized into the storage hexapole and simultaneously cooled by collisions with the pulsed gas. Ions desorbed from multiple laser shots can be accumulated in this hexapole before they are transferred to the ICR trap. With the combined ion source a computer-controlled switch between MALDI and ESI modes is possible in less than a minute, depending on the position of the MALDI target on the 384-spot plate. Immediate acquisition of mass spectra is possible after mode switching without the need for tuning or re-calibration. Copyright © 2002 John Wiley & Sons, Ltd. [source]


A Novel MALDI Matrix for Analyzing Peptides and Proteins: Paraffin Wax Immobilized Matrix,

CHINESE JOURNAL OF CHEMISTRY, Issue 1 2009
Yuanlong WEI
Abstract A new kind of MALDI matrix, termed paraffin wax immobilized matrix, was used to study peptide mixtures and proteins. During the preparation process, the paraffin wax was heated and coated on the stainless-steel target plate, and then 2,5-dihydrobenzoic acid (DHB) was deposited on the paraffin layer and stainless-steel target plate to obtain different kinds of matrix spots. The morphology of matrices on different supports and peptide-matrix co-crystallization were observed by a high resolution digital-video microscopy system. Peptide mixtures and bovine serum albumin (BSA) digests were used to investigate the performance of the immobilized matrices on the paraffin target. The MALDI-FTMS analysis results also showed that the detection sensitivity of matrices immobilized in the paraffin sample support was better than that on other sample supports. [source]


Microstructures and adiabatic shear bands formed by ballistic impact in steels and tungsten alloy

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 12 2003
Z. Q. DUAN
ABSTRACT Projectiles of sintered tungsten alloy were fired directly at two kinds of steel target plates. The microstructures near the perforation of a medium, 0.45% carbon steel target plate can be identified along the radial direction as: melted and rapidly solidified layer, recrystallized fine-grained layer, deformed fine-grained layer, deformed layer and normal matrix. The adiabatic shear bands cannot be found in this intermediate strength steel. The microstructures along the radial direction of perforation of 30CrMnMo steel target plate are different from that of the medium carbon steel. There was a melted and rapidly solidified layer on the surface of the perforation, underneath there was a diffusing layer, and then fine-grained layer appeared as streamlines. Several kinds of adiabatic shear bands were found in this higher strength steel; they had different directions and widths, which were relative to the shock waves, as well as the complex deformation process of penetration. The deformation of the projectiles was rather different when they impacted on target plates of medium carbon steel and 30CrMnMo steel. The projectile that impacted on the medium carbon steel target plate was tamped and its energy dissipated slowly, while that which impacted on the 30CrMnMo steel target plate was sheared and the energy dissipated quickly. [source]


Evaluation of a new matrix-free laser desorption/ionization method through statistic studies: comparison of the DIAMS (desorption/ionization on self-assembled monolayer surface) method with the MALDI and TGFA-LDI techniques

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 12 2008
Matthieu Bounichou
Abstract This work demonstrates that the desorption/ionization on self-assembled monolayer surface (DIAMS) mass spectrometry, a recent matrix-free laser desorption/ionization (LDI) method based on an organic target plate, is as statistically repeatable and reproducible as matrix assisted laser desorption ionization (MALDI) and thin gold film-assisted laser desorption/ionization (TGFA-LDI) mass spectrometries. On lipophilic DIAMS of target plates with a mixture of glycerides, repeatability/reproducibility has been estimated at 15 and 30% and the relative detection limit has been evaluated at 0.3 and 3 pmol, with and without NaI respectively. Salicylic acid and its d6 -isomer analysis confirm the applicability of the DIAMS method in the detection of compounds of low molecular weight. Copyright © 2008 John Wiley & Sons, Ltd. [source]