Tau Isoforms (tau + isoform)

Distribution by Scientific Domains

Selected Abstracts

Neurogenesis and cell cycle-reactivated neuronal death during pathogenic tau aggregation

K. Schindowski
The aim of the present study was to investigate the relation between neurogenesis, cell cycle reactivation and neuronal death during tau pathology in a novel tau transgenic mouse line THY-Tau22 with two frontotemporal dementia with parkinsonism linked to chromosome-17 mutations in a human tau isoform. This mouse displays all Alzheimer disease features of neurodegeneration and a broad timely resolution of tau pathology with hyperphosphorylation of tau at younger age (up to 6 months) and abnormal tau phosphorylation and tau aggregation in aged mice (by 10 months). Here, we present a follow-up of cell cycle markers with aging in control and transgenic mice from different ages. We show that there is an increased neurogenesis during tau hyperphosphorylation and cell cycle events during abnormal tau phosphorylation and tau aggregation preceding neuronal death and neurodegeneration. However, besides phosphorylation, other mechanisms including tau mutations and changes in tau expression and/or splicing may be also involved in these mechanisms of cell cycle reactivation. Altogether, these data suggest that cell cycle events in THY-Tau22 are resulting from neurogenesis in young animals and cell death in older ones. It suggests that neuronal cell death in such models is much more complex than believed. [source]

Microtubule-associated protein tau in human prostate cancer cells: Isoforms, phosphorylation, and interactions,

Skye Souter
Abstract Tau is a microtubule-associated protein whose function has been investigated primarily in neurons. Recently, tau expression has been correlated with increased drug resistance in various cancers of non-neuronal tissues. In this report, we investigate the tau expressed in cancerous prostate lines ALVA-31, DU 145, and PC-3. Prostate cancer tau is heat-stable and highly phosphorylated, containing many of the modifications identified in Alzheimer's disease brain tau. RT-PCR and phosphatase treatment indicated that all six alternatively spliced adult brain tau isoforms are expressed in ALVA-31 cells, and isoforms containing exon 6 as well as high molecular weight tau isoforms containing either exon 4A or a larger splice variant of exon 4A are also present. Consistent with its hyperphosphorylated state, a large proportion of ALVA-31 tau does not bind to microtubules, as detected by confocal microscopy and biochemical tests. Finally, endogenous ALVA-31 tau can interact with the p85 subunit of phosphatidylinositol 3-kinase, as demonstrated by co-immunoprecipitations and in vitro protein-binding assays. Our results suggest that tau in prostate cancer cells does not resemble that from normal adult brain and support the hypothesis that tau is a multifunctional protein. J. Cell. Biochem. 108: 555,564, 2009. 2009 Wiley-Liss, Inc. [source]

The neuropathology of frontotemporal lobar degeneration with respect to the cytological and biochemical characteristics of tau protein

S. Taniguchi
Pathological examinations, using a panel of tau and other antibodies, were performed on the brains from 55 consecutively acquired cases of frontotemporal lobar degeneration (FTLD). Clinically, these comprised 31 cases of frontotemporal dementia (FTD), 10 cases of motor neurone disease inclusion dementia (MNDID), seven cases of progressive aphasia (PA), four cases of semantic dementia (SD) and three cases of progressive apraxia (PAX). Tau pathology, in the form of neurofibrillary tangles (NFTs) and glial cell tangles, was present in six cases of FTD with parkinsonism linked to chromosome 17, five of these cases resulting from +16 splice-site mutation and one from +13 mutation in the tau gene. The insoluble tau proteins were comprised mostly of four-repeat (4-R) isoforms. Eight other cases of FTD, one of PA and all three cases of PAX showed tau-positive inclusions (Pick bodies) and swollen cells (Pick cells), characteristic of Pick's disease. In these cases, the insoluble tau proteins were present in most instances as three-repeat (3-R) tau isoforms, although two cases with a mixture of 3-R and 4-R isoforms were seen. One other case of FTD showed an unusual pathology characterized by massive extracellular deposition of tau protein, composed of 4-R tau isoforms, within white matter without neuronal or glial cell inclusions. However, 33 (60%) of 55 FTLD cases showed no tau pathology in the brain, except for the rare NFTs, composed of a mix of 3-R and 4-R isoforms, in some of the more elderly cases. Of these 33 cases, 13 had FTD, 10 had MNDID, six had PA and four had SD. The pathological changes present were those of a superficial cortical laminar microvacuolation with mild subpial and subcortical gliosis; the 10 MNDID cases had ubiquitin-positive inclusions in the cerebral cortex and hippocampus. These 33 nontau FTLD cases, along with five Alzheimer's disease (AD) and six Huntington's disease (HD) cases with severe pathology, showed a variable loss of soluble tau proteins, broadly comparable with the extent of neuronal loss from the cortex and loss of the intracortical perikaryal marker, NeuN, but unrelated to proteins within afferent projection fibres such as neurofilament and ,-synuclein. Levels of tau mRNA were decreased in parallel in the tau-negative FTLD cases and in the severe AD and HD cases. Hence, the loss of tau from these 33 nontau FTLD cases is just one aspect of a neurodegenerative process that destroys many components of the nerve cell machinery and does not represent a specific disordering of the cell's ability to form tau proteins or incorporate these into microtubules. [source]

Relationship of the extended tau haplotype to tau biochemistry and neuropathology in progressive supranuclear palsy

Wan-Kyng Liu PhD
Two extended haplotypes of the tau gene (H1 and H2) have been described. The frequency of H1 haplotype is increased in progressive supranuclear palsy (PSP). PSP is associated with filamentous tau lesions in neurons and glia, which are reportedly composed exclusively of tau isoforms with four repeats in the microtubule-binding domain (4R tau). To determine the influence of the tau haplotype on tau isoform composition and neuropathology, we studied 25 PSP cases and 6 Alzheimer's disease patients matched for age, sex, and postmortem delay. In the basal ganglia, tau and amyloid burdens were determined to see if there was an effect of concurrent Alzheimer-type pathology, and the ratio of 4R to 3R tau was measured in detergent-insoluble tau fractions. Insoluble tau from PSP was not composed exclusively of 4R tau. All brains had a mixture of 4R and 3R tau, but the ratio was different in Alzheimer's disease and PSP. In Alzheimer's disease there was less 4R than 3R tau, whereas the ratio was reversed in PSP. In PSP cases with concurrent Alzheimer-type pathology, the ratio of 4R to 3R was intermediate between Alzheimer's disease and PSP. The H1 haplotype had no effect on the 4R to 3R ratio or on tau and amyloid burdens. In summary, the H1 haplotype does not have a major influence on the pathological or biochemical phenotype of PSP. [source]