TaqMan Probe (taqman + probe)

Distribution by Scientific Domains


Selected Abstracts


Study of mRNA Expression by Real Time PCR of Cpkk1, Cpkk2 and Cpkk3, three MEKs of Cryphonectria parasitica, in Virus-free and Virus-infected Isogenic Isolates

JOURNAL OF PHYTOPATHOLOGY, Issue 6 2010
Laura Rostagno
Abstract Cpkk1 and Cpkk2 are two previously characterized Mitogen-activated protein kinase kinases (MEK) from Cryphonectria parasitica. For the characterization of the third MEK, primers designed to a conserved region of the known fungal MEK sequences were used in a PCR reaction to amplify genomic DNA from C. parasitica. The sequence of the resulting amplicon was compared to known sequences in the database using a Blast search. Results of the sequence comparison indicated that the initial fragment obtained encoded for a new MEK from C. parasitica, that had highest homology to Pbs2 from Saccharomyces cerevisiae. By inverse PCR we obtained a genomic fragment spanning the entire coding sequence of this MEK, which was named Cpkk3. The cDNA of Cpkk3 was obtained by compiling the sequences of RT-PCR products resulting from the amplification of purified mRNA. TaqMan® Probes were designed to analyse the expression of Cpkk1, Cpkk2 and Cpkk3 mRNA through RT-Real Time PCR. This protocol allowed the expression of Cpkk3 to be successfully compared to the expression of Cpkk1 and Cpkk2, two previously cloned C. parasitica MEKs. No variation in expression was associated with the presence of a virus after 2 days of growth in standard conditions whereas an increase in the expression level of all the three MEKs was shown after 4 days of growth. [source]


Genetic diversity and distribution of periphytic Synechococcus spp. in biofilms and picoplankton of Lake Constance

FEMS MICROBIOLOGY ECOLOGY, Issue 2 2004
Sven Becker
Abstract In various water depths of the littoral zone of Lake Constance (Bodensee) cyanobacteria of the Synechococcus -type were isolated from biofilms (periphyton) on three natural substrates and an artificial one (unglazed tiles). From one tile three strains of phycoerythrin (PE)-rich Synechococcus spp. were isolated, the first examples of these organisms in the epibenthos. Phylogenetic inference based on the 16S,23S rRNA intergenic spacer (ITS-1) assigned all periphytic isolates to two clusters of the picophytoplankton clade (evolutionary lineage VI of cyanobacteria). The sequence divergence in the ITS-1 was used to design specific PCR primers to allow direct, culture-independent detection and quantification of isolated Synechococcus strains in natural periphytic and pelagic samples. Denaturing gradient gel electrophoresis (DGGE) analysis revealed depth-related differences of Synechococcus spp. distribution on tiles placed in the littoral zone. Synechococcus genotypes were observed which occurred in both the periphyton (on tiles) and in the pelagic picoplankton. A strain with one of these genotypes, Synechococcus sp. BO 8805, was isolated from the pelagic zone in 1988. Its genotype was found on tiles that had been exposed at different water depths in the littoral zone in spring and autumn of the year 2000. Quantitative analysis with a genotype-specific TaqMan probe and real-time Taq nuclease assays (TNA) confirmed its presence in the pelagic zone, although appearance of this and related genotypes was highly irregular and exhibited strong differences between consecutive years. Our results show that the ability to form significant subpopulations in pelagic and periphytic communities exists in three out of four phylogenetic clusters of Synechococcus spp. in Lake Constance. This versatility may be a key feature in the ubiquity of the evolutionary lineage VI of cyanobacteria. [source]


One-step RNA pathogen detection with reverse transcriptase activity of a mutated thermostable Thermus aquaticus DNA polymerase

BIOTECHNOLOGY JOURNAL, Issue 2 2010
Ramon Kranaster
Abstract We describe the cloning and characterization of a mutated thermostable DNA polymerase from Thermus aquaticus (Taq) that exhibits an increased reverse transcriptase activity and is therefore designated for one-step PCR pathogen detection using established real-time detection methods. We demonstrate that this Taq polymerase mutant (Taq M1) has similar PCR sensitivity and nuclease activity as the respective Taq wild-type DNA polymerase. In addition, and in marked contrast to the wild-type, Taq M1 exhibits a significantly increased reverse transcriptase activity especially at high temperatures (>60°C). RNA generally hosts highly stable secondary structure motifs, such as hairpins and G-quadruplexes, which complicate, or in the worst case obviate, reverse transcription (RT). Thus, RT at high temperatures is desired to weaken or melt secondary structure motifs. To demonstrate the ability of Taq M1 for RNA detection of pathogens, we performed TaqMan probe-based diagnostics of Dobrava viruses by one-step RT-PCR. We found similar detection sensitivities compared to commercially available RT-PCR systems without further optimization of reaction parameters, thus making this enzyme highly suitable for any PCR probe-based RNA detection method. [source]


Identification of adiponectin and its receptors in human osteoblast-like cells and association of T45G polymorphism in exon 2 of adiponectin gene with lumbar spine bone mineral density in Korean women

CLINICAL ENDOCRINOLOGY, Issue 5 2006
Won Young Lee
Summary Objective, The role of adiponectin in bone metabolism has been recently reported in in vitro and in vivo studies. There has been no report on the association of adiponectin gene polymorphism and bone mineral density (BMD). Therefore, we investigated whether two single nucleotide polymorphisms (SNPs), T45G and G276T, in the adiponectin gene were related to BMD in Koreans. We also report on the identification of adiponectin and its receptors 1 and 2 in human osteoblast-like cell lines. Patients and measurements, MG-63 cells were cultured and osteogenic and adipogenic differentiations from human mesenchymal stem cells (hMSCs) were performed. RNA was then extracted from the cultured cells and reverse transcriptase-polymerase chain reaction (RT-PCR) was performed using primers for adiponectin and for the adiponectin receptor genes. In 249 female and 80 male subjects, measurements were made of their lumbar spine and femoral neck BMDs, and biochemical markers of bone turnover. The genotyping of the T45G polymorphism in exon 2 and the G276T polymorphisms in intron 2 in the adiponectin gene was performed using an allelic discrimination assay with a TaqMan probe. Analyses were performed separately in each cohort. Results, We found that the mRNAs for adiponectin and for adiponectin receptor 1 (AdipoR1) and 2 (AdipoR2) were expressed in the MG-63 cells. Sequencing of the PCR products revealed that they were identical to human adiponectin, AdipoR1 and AdipoR2, respectively. mRNAs for adiponectin, AdipoR1 and AdipoR2 were also expressed in the osteoblastic and adipogenic cell lines differentiated from hMSCs. For the polymorphism study, the frequencies of T45G and G276T in the adiponectin gene were in compliance with Hardy,Weinberg equilibrium and the two polymorphisms were in complete linkage disequilibrium (D, = ,1·0, P < 0·001). In the female cohort, subjects with G alleles at the T45G locus had significantly lower lumbar spine BMD than those subjects with the TT genotype. Although BMD levels showed no association with the G276T locus, the GT genotype group showed significantly higher urine deoxypyridinoline levels than other genotype groups. In the male cohort, no association was observed between adiponectin genotypes and BMD levels. Conclusions, We observed the expression of adiponectin, AdipoR1 and AdipoR2 in the MG-63 cell line and the osteoblastic cell line differentiated from hMSCs. T45G polymorphism in exon 2 of the adiponectin gene is associated with lumbar spine BMD and G276T polymorphism in intron 2 of the adiponectin gene is associated with the urine deoxypyridinoline level in Korean women. Additional studies are needed to elucidate the precise contribution of adiponectin to bone mineral metabolism. [source]


USING QUANTITATIVE PCR TO DETERMINE THE DISTRIBUTION OF A SEMICRYPTIC BENTHIC DIATOM, NAVICULA PHYLLEPTA (BACILLARIOPHYCEAE),

JOURNAL OF PHYCOLOGY, Issue 5 2006
Véronique Créach
Evidence has accumulated during the last decade showing that many established diatom morpho-species actually consist of several semicryptic or truly cryptic species. As these species are difficult or even impossible to differentiate by microscopic analysis, there is virtually no information on how they behave in natural environments. In this study, we developed a quantitative real-time PCR (qPCR) assay using TaqMan probes® targeted to the internal transcribed spacer 1 (ITS1) to assess the spatial distribution and seasonal dynamics of an important component of the microphytobenthos of intertidal sediments. Navicula phyllepta Kützing is a brackish-marine morpho-species with a cosmopolitan distribution. Axenic clones of this species were isolated from natural assemblages of benthic diatoms at different intertidal stations in the Westerschelde estuary (The Netherlands). At least two distinct semicryptic species of N. phyllepta were present, as shown by differences in the quantity of DNA per cell, the ITS1 sequences and the copy number of ITS per cell. DNA and chl a concentrations extracted from sediment surface samples were closely correlated, showing that the DNA used for subsequent analysis mostly belonged to the microalgal community. The results of real-time qPCR from sites throughout the estuary and over several seasons agreed well with microscopic counts. Additionally, the seasonal pattern of the two forms of N. phyllepta showed an overlapping, but unique distribution along the estuary. [source]


High frequency of false-positive signals in a real-time PCR-based "Plus/Minus" assay

APMIS, Issue 1 2009
FOROUGH L. NOWROUZIAN
Molecular biological methods using real-time polymerase chain reaction (RT-PCR) for detection of bacterial and viral genes in different environments have been developed into assays from different commercial sources. Applied Biosystems include and support two applications with their TaqMan instrument: the "Plus/Minus" and the "Allelic Discrimination" assays. These approaches are RT-PCR based, use short primers and fluorescent-labeled TaqMan probes and include three processes: a pre-read run, a PCR-amplification run, and a post-read run. In the "Plus/Minus" assay, samples and controls (distilled water) are loaded into the instrument, which calculates a positive or a negative outcome based on differences in signals between samples and the controls. When testing the "Plus/Minus" assay for detection of usp genes encoding a uropathogenic specific protein in Escherichia coli, an inordinately high proportion of false-positive signals was observed. This was shown to be due to a serious methodological deficiency. Our observations indicate that an adequate no-template control closely matching the target samples in all aspects, including amount of DNA, is required to establish a correct threshold in the pre-read run that forms the basis for further calculations in the post-read run of the "Plus/Minus" assay. [source]


Rapid Polymerase Chain Reaction-based Screening Assay for Bacterial Biothreat Agents

ACADEMIC EMERGENCY MEDICINE, Issue 4 2008
Samuel Yang MD
Abstract Objectives:, To design and evaluate a rapid polymerase chain reaction (PCR)-based assay for detecting Eubacteria and performing early screening for selected Class A biothreat bacterial pathogens. Methods:, The authors designed a two-step PCR-based algorithm consisting of an initial broad-based universal detection step, followed by specific pathogen identification targeted for identification of the Class A bacterial biothreat agents. A region in the bacterial 16S rRNA gene containing a highly variable sequence flanked by clusters of conserved sequences was chosen as the target for the PCR assay design. A previously described highly conserved region located within the 16S rRNA amplicon was selected as the universal probe (UniProbe, Integrated DNA Technology, Coralville, IA). Pathogen-specific TaqMan probes were designed for Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Performance of the assay was assessed using genomic DNA extracted from the aforementioned biothreat-related organisms (inactivated or surrogate) and other common bacteria. Results:, The UniProbe detected the presence of all tested Eubacteria (31/31) with high analytical sensitivity. The biothreat-specific probes accurately identified organisms down to the closely related species and genus level, but were unable to discriminate between very close surrogates, such as Yersinia philomiragia and Bacillus cereus. Conclusions:, A simple, two-step PCR-based assay proved capable of both universal bacterial detection and identification of select Class A bacterial biothreat and biothreat-related pathogens. Although this assay requires confirmatory testing for definitive species identification, the method has great potential for use in ED-based settings for rapid diagnosis in cases of suspected Category A bacterial biothreat agents. [source]