Tail Resorption (tail + resorption)

Distribution by Scientific Domains


Selected Abstracts


Genistein prevents thyroid hormone-dependent tail regression of Rana catesbeiana tadpoles by targetting protein kinase C and thyroid hormone receptor ,

DEVELOPMENTAL DYNAMICS, Issue 3 2007
L. Ji
Abstract Thyroid hormone (TH)-regulated gene expression is mainly mediated by TH binding to nuclear thyroid hormone receptors (TRs). Despite extensive studies in mammalian cell lines that show that phosphorylation signaling pathways are important in TH action, little is known about their roles on TH signaling in vivo during development. Anuran metamorphosis is a postembryonic process that is absolutely dependent upon TH and tadpole tail resorption can be precociously induced by exogenous administration of 3,5,3,-triiodothyronine (T3). We demonstrate that genistein (a major isoflavone in soy products and tyrosine kinase inhibitor) and the PKC inhibitor (H7) prevent T3 -induced regression of the Rana catesbeiana tadpole tail. T3 -induced protein kinase C tyrosine phosphorylation and kinase activity are inhibited by genistein while T3 -induced up-regulation of TR, mRNA, but not TR, mRNA, is significantly attenuated, most likely through inhibition of T3 -dependent phosphorylation of the TR, protein. This phosphorylation may be modulated through PKC. These data demonstrate that T3 signaling in the context of normal cells in vivo includes phosphorylation as an important factor in establishing T3 -dependent tail regression during development. Developmental Dynamics 236:777,790, 2007. © 2007 Wiley-Liss, Inc. [source]


Matrix metalloproteinases mediate the dismantling of mesenchymal structures in the tadpole tail during thyroid hormone-induced tail resorption

DEVELOPMENTAL DYNAMICS, Issue 3 2002
Jae-Chang Jung
Abstract It has been suggested that a family of tissue remodelling enzymes called matrix metalloproteinases (MMPs) play a causal role in the process of tail resorption during thyroid hormone-induced metamorphosis of the anuran tadpole; however, this hypothesis has never been directly substantiated. We cloned two new Xenopus MMPs, gelatinase A (MMP-2) and MT3-MMP (MMP-16), and the MMP inhibitor TIMP-2. These clones were used along with several others to perform a comprehensive expression study. We show that all MMPs and TIMP-2 are dramatically induced in the resorbing tail during spontaneous metamorphosis and are spatially coexpressed, primarily in the remodelling mesenchymal tissues. By Northern blotting, we show that all the examined MMPs/TIMP-2 are also induced by treatment of organ-cultured tails with thyroid hormone (T3). Using the organ culture model, we provide the first direct evidence that MMPs are required for T3 -induced tail resorption by showing that a synthetic inhibitor of MMP activity/expression can specifically retard the resorption process. By gelatin zymography, we also show T3 induction of a fifth MMP, preliminarily identified as gelatinase B (GelB; MMP-9). Moreover, T3 not only induces MMP/TIMP expression but also MMP activation, and we provide evidence that TIMP-2 participates in the latter process. These findings suggest that MMPs and TIMPs act in concert to effect the dismantling of mesenchymal structures during T3 -induced metamorphic tadpole tail resorption. © 2002 Wiley-Liss, Inc. [source]


Ontogeny of escape swimming performance in the spotted salamander

FUNCTIONAL ECOLOGY, Issue 3 2010
Tobias Landberg
Summary 1.,The life stage suffering the highest predation rate is expected to have the highest escape performance unless developmental or functional constraints interfere. Peak aquatic escape performance in ephemeral pond-breeding amphibians is expected to develop early in the larval period, and metamorphosis is expected to reduce or completely disrupt aquatic escape performance. In anurans, exceptionally low escape performance during metamorphosis creates selection favouring rapid metamorphosis , which minimizes the time individuals spend in the vulnerable transition between tadpole and frog. 2.,We investigated the development of aquatic escape performance in the spotted salamander, Ambystoma maculatum (Shaw, 1802), from embryonic development through metamorphosis. We expected performance to peak early in the larval period as hatchlings face high rates of predation but embryos must first develop escape behaviours. We also tested whether escape performance during metamorphosis was intermediate, as predicted by tail fin resorption, or lower than larvae and adults indicating a major physiological disruption. 3.,Escape performance shows a complex ontogeny that is first positively influenced by embryonic and early larval development and then negatively correlated with tail resorption and body size. Escape distance was the only performance metric not affected by life stage. In contrast, both escape velocity and duration showed ontogenetic peaks early in the larval period with the lowest performance found in early embryos and adults and intermediate performance during metamorphosis. 4.,This pattern suggests that metamorphosis does not impose a major physiological disruption on escape performance. Because spotted salamanders do not pass through a frog-like ,ontogenetic performance valley' during metamorphosis, they may be less subject than anurans to selection favouring rapid metamorphosis. 5.,Functional implications of phenotypic variation should be considered in an ontogenetic framework because the relationship between body size and escape performance can be reversed on either side of an ontogenetic performance peak. The assumption that metamorphosis radically disrupts basic functions such as predator evasion does not seem universally warranted and suggests examination of ontogenetic performance trajectories in a diversity of animals with complex life cycles. [source]