Home About us Contact | |||
Tail Domain (tail + domain)
Selected AbstractsMyosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcriptionCYTOSKELETON, Issue 6 2008Maria Cristina S. Pranchevicius Abstract Nuclear actin and nuclear myosins have been implicated in the regulation of gene expression in vertebrate cells. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. In this study, myosin-Va, phosphorylated on a conserved serine in the tail domain (phospho-ser1650 MVa), was localized to subnuclear compartments. A monoclonal antibody, 9E6, raised against a peptide corresponding to phosphoserine1650 and flanking regions of the murine myosin Va sequence, was immunoreactive to myosin Va heavy chain in cellular and nuclear extracts of HeLa cells, PC12 cells and B16-F10 melanocytes. Immunofluorescence microscopy with this antibody revealed discrete irregular spots within the nucleoplasm that colocalized with SC35, a splicing factor that earmarks nuclear speckles. Phospho-ser1650 MVa was not detected in other nuclear compartments, such as condensed chromatin, Cajal bodies, gems and perinucleolar caps. Although nucleoli also were not labeled by 9E6 under normal conditions, inhibition of transcription in HeLa cells by actinomycin D caused the redistribution of phospho-ser1650 MVa to nucleoli, as well as separating a fraction of phospho-ser1650 MVa from SC35 into near-neighboring particles. These observations indicate a novel role for myosin Va in nuclear compartmentalization and offer a new lead towards the understanding of actomyosin-based gene regulation. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source] Expression of constructs of the neuronal isoform of myosin-Va interferes with the distribution of melanosomes and other vesicles in melanoma cellsCYTOSKELETON, Issue 2 2002Joćo Carlos da Silva Bizario Abstract Myosin-Va has been implicated in melanosome translocation, but the exact molecular mechanisms underlying this function are not known. In the dilute, S91 melanoma cells, melanosomes move to the cell periphery but do not accumulate in the tips of dendrites as occurs in wild-type B16 melanocytes; rather, they return and accumulate primarily at the pericentrosomal region in a microtubule-dependent manner. Expression of the full-length neuronal isoform of myosin-Va in S91 cells causes melanosomes to disperse, occupying a cellular area approximately twice that observed in non-transfected cells, suggesting a partial rescue of the dilute phenotype. Overexpression of the full tail domain in S91 cells is not sufficient to induce melanosome dispersion, rather it causes melanosomal clumping. Overexpression of the head and head-neck domains of myosin-Va in B16 cells does not alter the melanosome distribution. However, overexpression of the full tail domain in these cells induces melanosome aggregation and the appearance of tail-associated, aggregated particles or vesicular structures that exhibit variable degrees of staining for melanosomal and Golgi ,-COP markers, as well as colocalization with the endogenous myosin-Va. Altogether, the present data suggest that myosin-Va plays a role in regulating the direction of microtubule-dependent melanosome translocation, in addition to promoting the capture of melanosomes at the cell periphery as suggested by previous studies. These studies also reinforce the notion that myosin-V has a broader function in melanocytes by acting on vesicular targeting or intracellular protein trafficking. Cell Motil. Cytoskeleton 51:57,75, 2002. © 2002 Wiley-Liss, Inc. [source] Identification and characterization of nucleoplasmin 3 as a histone-binding protein in embryonic stem cellsDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2008Natsuki Motoi Embryonic stem (ES) cells are thought to have unique chromatin structures responsible for their capacity for self-renewal and pluripotency. To examine this possibility, we sought nuclear proteins in mouse ES cells that specifically bind to histones using a pull-down assay with synthetic peptides of histone H3 and H4 tail domain as baits. Nuclear proteins preferentially bound to the latter. We identified 45 proteins associated with the histone H4 tail and grouped them into four categories: 10 chromatin remodeling proteins, five histone chaperones, two histone modification-related proteins, and 28 other proteins. mRNA expression levels of 20 proteins selected from these 45 proteins were compared between undifferentiated and retinoic acid (RA)-induced differentiated ES cells. All of the genes were similarly expressed in both states of ES cells, except nucleoplasmin 3 (NPM3) that was expressed at a higher level in the undifferentiated cells. NPM3 proteins were localized in the nucleoli and nuclei of the cells and expression was decreased during RA-induced differentiation. When transfected with NPM3 gene, ES cells significantly increased their proliferation compared with control cells. The present study strongly suggests that NPM3 is a chromatin remodeling protein responsible for the unique chromatin structure and replicative capacity of ES cells. [source] MYH9 related disease: four novel mutations of the tail domain of myosin-9 correlating with a mild clinical phenotypeEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 4 2010Alessandro Pecci Abstract MYH9 -related disease (MYH9 -RD) is a rare autosomal dominant disorder caused by mutations in MYH9, the gene encoding the heavy chain of non-muscle myosin IIA. All patients present congenital macrothrombocytopenia and inclusion bodies in neutrophils. Some of them can also develop sensorineural deafness, presenile cataract, and/or progressive nephropathy leading to end-stage renal failure. We report four families, each with a novel mutation: two missense mutations, in exons 31 and 32, and two out of frame deletions in exon 40. They were associated with no bleeding diathesis, normal, or only slightly reduced platelet count and no extra-hematological manifestations, confirming that alterations of the tail domain cause a mild form of MYH9 -RD with no clinically relevant defects. [source] Genotype,phenotype correlation in skin fragility-ectodermal dysplasia syndrome resulting from mutations in plakophilin 1EXPERIMENTAL DERMATOLOGY, Issue 2 2002T. Hamada Abstract: We report a 42-year-old Japanese man with an unusual autosomal recessive genodermatosis. The clinical features comprised normal skin at birth, loss of scalp hair at 3-months of age after a febrile illness, progressive nail dystrophy during infancy, palmoplantar keratoderma starting around the age of 18 years and trauma-induced skin fragility and blisters noted from the age of 20 years. Skin biopsy of rubbed non-lesional skin revealed widening of spaces between adjacent keratinocytes from the suprabasal layer upwards. Electron microscopy demonstrated a reduced number of hypoplastic desmosomes. Immunohistochemical labeling showed a reduction in intercellular staining for the desmosome component plakophilin 1. Mutation analysis revealed a homozygous intron 11 donor splice site mutation in the plakophilin 1 gene, 2021+1 G>A (GenBank no. Z34974). RT-PCR, using RNA extracted from the skin biopsy, provided evidence for residual low levels of the full-length wild-type transcript (,8%) as well as multiple other near full-length transcripts, one of which was in frame leading to deletion of 17 amino acids from the 9th arm-repeat unit of the plakophilin 1 tail domain. Thus, the molecular findings help explain the clinical features in the patient, who has a similar but milder phenotype to previously reported patients with skin fragility-ectodermal dysplasia syndrome associated with complete ablation of plakophilin 1 (OMIM 604536). This new ,mitis' phenotype provides further clinicopathological evidence for the role of plakophilin 1 in keratinocyte cell,cell adhesion and ectodermal development. [source] Coupling of endothelin receptors to the ERK/MAP kinase pathway,FEBS JOURNAL, Issue 20 2001Roles of palmitoylation Endothelins are potent mitogens that stimulate extracellular signal-regulated kinases (ERK/MAP kinases) through their cognate G-protein-coupled receptors, ETA and ETB. To address the role of post-translational ET receptor modifications such as acylation on ERK activation and to identify relevant downstream effectors coupling the ET receptor to the ERK signaling cascades we have constructed a panel of palmitoylation-deficient ET receptor mutants with differential G, protein binding capacity. Endothelin-1 stimulation of wild-type ETA or ETB induced a fivefold to sixfold increase in ERK in COS-7 and CHO cells whereas full-length nonpalmitoylated ETA and ETB mutants failed to stimulate ERK. A truncated ETB lacking the C-terminal tail domain including putative phosphorylation and arrestin binding site(s) but retaining the critical palmitoylation site(s) was still able to fully stimulate ERK activation. Using mutated ET receptors with selective G-protein-coupling we found that endothelin-induced stimulation of G,q, but not of G,i or G,s, is essential for endothelin-mediated ERK activation. Inhibition of protein kinases A and C or epidermal growth factor receptor kinase failed to prevent ETA - and ETB -mediated ERK activation whereas blockage of phospholipase C-, completely abrogated endothelin-promoted ERK activation through ETA and ETB in recombinant COS-7 and native C6 cells. Complex formation of Ca2+ or inhibition of Src family tyrosine kinases prevented ET-1-induced ERK-2 activation in C6-cells. Our results indicate that endothelin-promoted ERK/MAPK activation criticially depends on palmitoylation but not on phosphorylation of ET receptors, and that the G,q/phospholipase C-,/Ca2+/Src signaling cascade is necessary for efficient coupling of ET receptors to the ERK/MAPK pathway. [source] Mutation spectrum of MYO7A and evaluation of a novel nonsyndromic deafness DFNB2 allele with residual function,,HUMAN MUTATION, Issue 4 2008Saima Riazuddin Abstract Recessive mutations of MYO7A, encoding unconventional myosin VIIA, can cause either a deaf-blindness syndrome (type 1 Usher syndrome; USH1B) or nonsyndromic deafness (DFNB2). In our study, deafness segregating as a recessive trait in 24 consanguineous families showed linkage to markers for the DFNB2/USH1B locus on chromosome 11q13.5. A total of 23 of these families segregate USH1 due to 17 homozygous mutant MYO7A alleles, of which 14 are novel. One family segregated nonsyndromic hearing loss DFNB2 due to a novel three-nucleotide deletion in an exon of MYO7A (p.E1716del) encoding a region of the tail domain. We hypothesized that DFNB2 alleles of MYO7A have residual myosin VIIA. To address this question we investigated the effects of several mutant alleles by making green fluorescent protein (GFP) tagged cDNA expression constructs containing engineered mutations of mouse Myo7a at codons equivalent to pathogenic USH1B and DFNB2 alleles of human MYO7A. We show that in transfected mouse hair cells an USH1B mutant GFP-myosin VIIa does not localize properly to inner ear hair cell stereocilia. However, a GFP-myosin VIIa protein engineered to have an equivalent DFNB2 mutation to p.E1716del localizes correctly in transfected mouse hair cells. This finding is consistent with the hypothesis that p.E1716del causes a less severe phenotype (DFNB2) than the USH1B -associated alleles because the resulting protein retains some degree of normal function. Hum Mutat 29(4), 502,511, 2008. Published 2008 Wiley-Liss, Inc. [source] Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9 -related disease,HUMAN MUTATION, Issue 3 2008Alessandro Pecci Abstract MYH9 -related disease (MYH9 -RD) is a rare autosomal-dominant disorder caused by mutations in MYH9, the gene for the heavy chain of nonmuscle myosin IIA (NMMHC-IIA). All patients present from birth with macrothrombocytopenia, but in infancy or adult life, some of them develop sensorineural deafness, presenile cataracts, and/or progressive nephritis leading to end-stage renal failure. No consistent correlations have been identified between the 27 different MYH9 mutations identified so far and the variable clinical evolution of the disease. We have evaluated 108 consecutive MYH9 -RD patients belonging to 50 unrelated pedigrees. The risk of noncongenital manifestations associated with different genotypes was estimated over time by event-free survival analysis. We demonstrated that all subjects with mutations in the motor domain of NMMHC-IIA present with severe thrombocytopenia and develop nephritis and deafness before the age of 40 years, while those with mutations in the tail domain have a much lower risk of noncongenital complications and significantly higher platelet counts. We also evaluated the clinical course of patients with mutations in the four most frequently affected residues of NMMHC-IIA (responsible for 70% of MYH9 -RD cases). We concluded that mutations at residue 1933 do not induce kidney damage or cataracts and cause deafness only in the elderly, those in position 702 result in severe thrombocytopenia and produce nephritis and deafness at a juvenile age, while alterations at residue 1424 or 1841 result in intermediate clinical pictures. These findings are relevant not only to patients' clinical management but also to the elucidation of the pathogenesis of the disease. Hum Mutat 29(3), 409,417, 2008. © 2007 Wiley-Liss, Inc. [source] A case of WHIM syndrome associated with diabetes and hypothyroidismPEDIATRIC DIABETES, Issue 7 2009Junji Takaya Abstract: The WHIM syndrome is a rare immunological disorder characterized by warts, hypogammaglobulinemia, infections, and myelokathexis. We hypothesized that immunological or genetic mechanisms may link WHIM syndrome and type 1 diabetes. We report that the young girl with WHIM syndrome developed diabetes and transient hypothyroidism. A nonsense mutation (C,T) truncating the CXC chemokine receptor 4 (CXCR4) C-terminal cytoplasmic tail domain occurred at nucleotide position 1000(R334X) of the CXCR4 gene in one allele of the patient was identified, and the person was diagnosed as having WHIM syndrome. Recent observation suggested that the CXCR4, a G-protein-coupled receptor with a unique ligand, CXCL12, might be involved in the pathogenesis for type 1 diabetes. Taken into consideration the concurrent prevalence of the two disorders and the speculated common pathogenesis associated with the CXCR4, our patient may enable us to understand the genetic damage related to accelerated apoptosis. [source] An experimental study of GFP-based FRET, with application to intrinsically unstructured proteinsPROTEIN SCIENCE, Issue 7 2007Tomoo Ohashi Abstract We have experimentally studied the fluorescence resonance energy transfer (FRET) between green fluorescent protein (GFP) molecules by inserting folded or intrinsically unstructured proteins between CyPet and Ypet. We discovered that most of the enhanced FRET signal previously reported for this pair was due to enhanced dimerization, so we engineered a monomerizing mutation into each. An insert containing a single fibronectin type III domain (3.7 nm end-to-end) gave a moderate FRET signal while a two-domain insert (7.0 nm) gave no FRET. We then tested unstructured proteins of various lengths, including the charged-plus-PQ domain of ZipA, the tail domain of ,-adducin, and the C-terminal tail domain of FtsZ. The structures of these FRET constructs were also studied by electron microscopy and sedimentation. A 12 amino acid linker and the N-terminal 33 amino acids of the charged domain of the ZipA gave strong FRET signals. The C-terminal 33 amino acids of the PQ domain of the ZipA and several unstructured proteins with 66,68 amino acids gave moderate FRET signals. The 150 amino acid charged-plus-PQ construct gave a barely detectable FRET signal. FRET efficiency was calculated from the decreased donor emission to estimate the distance between donor and acceptor. The donor,acceptor distance varied for unstructured inserts of the same length, suggesting that they had variable stiffness (persistence length). We conclude that GFP-based FRET can be useful for studying intrinsically unstructured proteins, and we present a range of calibrated protein inserts to experimentally determine the distances that can be studied. [source] |