Home About us Contact | |||
Tail Bud (tail + bud)
Selected AbstractsChurchill and Sip1a repress fibroblast growth factor signaling during zebrafish somitogenesisDEVELOPMENTAL DYNAMICS, Issue 2 2010Fatma O. Kok Abstract Cell-type specific regulation of a small number of growth factor signal transduction pathways generates diverse developmental outcomes. The zinc finger protein Churchill (ChCh) is a key effector of fibroblast growth factor (FGF) signaling during gastrulation. ChCh is largely thought to act by inducing expression of the multifunctional Sip1 (Smad Interacting Protein 1). We investigated the function of ChCh and Sip1a during zebrafish somitogenesis. Knockdown of ChCh or Sip1a results in misshapen somites that are short and narrow. As in wild-type embryos, cycling gene expression occurs in the developing somites in ChCh and Sip1a compromised embryos, but expression of her1 and her7 is maintained in formed somites. In addition, tail bud fgf8 expression is expanded anteriorly in these embryos. Finally, we found that blocking FGF8 restores somite morphology in ChCh and Sip1a compromised embryos. These results demonstrate a novel role for ChCh and Sip1a in repression of FGF activity. Developmental Dynamics 239:548,558, 2010. © 2009 Wiley-Liss, Inc. [source] Cloning and characterization of voltage-gated calcium channel alpha1 subunits in Xenopus laevis during developmentDEVELOPMENTAL DYNAMICS, Issue 11 2009Brittany B. Lewis Abstract Voltage-gated calcium channels play a critical role in regulating the Ca2+ activity that mediates many aspects of neural development, including neural induction, neurotransmitter phenotype specification, and neurite outgrowth. Using Xenopus laevis embryos, we describe the spatial and temporal expression patterns during development of the 10 pore-forming alpha1 subunits that define the channels' kinetic properties. In situ hybridization indicates that CaV1.2, CaV2.1, CaV2.2, and CaV3.2 are expressed during neurula stages throughout the neural tube. These, along with CaV1.3 and CaV2.3, beginning at early tail bud stages, and CaV3.1 at late tail bud stages, are detected in complex patterns within the brain and spinal cord through swimming tadpole stages. Additional expression of various alpha1 subunits was observed in the cranial ganglia, retina, olfactory epithelium, pineal gland, and heart. The unique expression patterns for the different alpha1 subunits suggests they are under precise spatial and temporal regulation and are serving specific functions during embryonic development. Developmental Dynamics 238:2891,2902, 2009. © 2009 Wiley-Liss, Inc. [source] The amphioxus T-box gene, AmphiTbx15/18/22, illuminates the origins of chordate segmentationEVOLUTION AND DEVELOPMENT, Issue 2 2006Laura Beaster-Jones SUMMARY Amphioxus and vertebrates are the only deuterostomes to exhibit unequivocal somitic segmentation. The relative simplicity of the amphioxus genome makes it a favorable organism for elucidating the basic genetic network required for chordate somite development. Here we describe the developmental expression of the somite marker, AmphiTbx15/18/22, which is first expressed at the mid-gastrula stage in dorsolateral mesendoderm. At the early neurula stage, expression is detected in the first three pairs of developing somites. By the mid-neurula stage, expression is downregulated in anterior somites, and only detected in the penultimate somite primordia. In early larvae, the gene is expressed in nascent somites before they pinch off from the posterior archenteron (tail bud). Integrating functional, phylogenetic and expression data from a variety of triploblast organisms, we have reconstructed the evolutionary history of the Tbx15/18/22 subfamily. This analysis suggests that the Tbx15/18/22 gene may have played a role in patterning somites in the last common ancestor of all chordates, a role that was later conserved by its descendents following gene duplications within the vertebrate lineage. Furthermore, the comparison of expression domains within this gene subfamily reveals similarities in the genetic bases of trunk and cranial mesoderm segmentation. This lends support to the hypothesis that the vertebrate head evolved from an ancestor possessing segmented cranial mesoderm. [source] Identification of evolutionarily conserved regulatory elements in the mouse Fgf8 locusGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 1 2006Friedrich Beermann Abstract The secreted signaling molecule fibroblast growth factor 8 (Fgf8) is an essential component of certain embryonic signaling centers including the mid-hindbrain (isthmic) organizer, the first branchial arch (BA1), and the apical ectodermal ridge (AER). In these signaling centers Fgf8 transcripts are expressed in a dynamic and transient fashion, but the mechanism by which this highly specific expression pattern is established remains largely unknown. We used DNA sequence comparisons coupled to transgenic approaches to obtain insight into the structure and function of regulatory elements in the Fgf8 locus. First, a bacterial artificial chromosome (BAC) containing the mouse Fgf8 gene partially rescues the embryonic lethality of Fgf8- deficient mice and controls Fgf8 -specific gene expression of a coinjected lacZ reporter transgene. Second, sequence comparison of vertebrate Fgf8 loci revealed evolutionarily highly conserved noncoding sequences that were unexpectedly located mainly 3, of the Fgf8 coding region. Third, in transgenic mice some of these elements were sufficient to target expression to the AER, tail bud, and brain, including the isthmic organizer, indicating that they may represent Fgf8 cis-acting elements. Collectively, these data identify novel regulatory elements of the Fgf8 gene sufficient to drive expression to regions of known Fgf8 activity. genesis 44:1,6, 2006. © 2006 Wiley-Liss, Inc. [source] Lack of teratogenicity of microcystin-LR in the mouse and toadJOURNAL OF APPLIED TOXICOLOGY, Issue 1 2002N. Chernoff Abstract Microcystin-LR (MC-LR) is a cyanobacterial toxin generated by the organism Microcystis aeruginosa. Although the hepatotoxicity of this chemical has been characterized, the potential developmental toxicity in vertebrates has not been well studied. The purpose of this study was to elucidate the effects of this toxin on the in vivo and in vitro development of mammals and the development of an Anuran (toad). Initial acute toxicity experiments with female CD-1 mice were accomplished with MC-LR administered i.p. in saline. Lethality occurred at 128 and 160 µg kg ,1 and histopathology revealed massive hepatic necrosis with diffuse hemorrhage. Developmental toxicity studies were done with MC-LR administered i.p. for 2-day periods: gestation days 7,8, 9,10 or 11,12. Doses used ranged from 2 to 128 µg kg,1. On gestation day 17, fetuses were weighed and analyzed for gross morphological and skeletal defects. No treatment-related differences were seen in litter size, viability, weight or the incidence of anomalies. Groups of dams dosed with 32,128 µg kg,1 on gestation days 7,8, 9,10 or 11,12 were allowed to give birth and the growth and development of their pups were followed postnatally. There were no significant effects noted in the offspring of the treated dams. Neurulation-staged CD-1 mouse conceptuses were exposed to 50,1000 nM MC-LR in whole embryo culture for 24 h. No significant increase in abnormalities or developmental delays was observed. Finally, exposure of the developing toad. Bufo arenarum was done from stage 17 (tail bud) for 10 days at concentrations of 1,20 mg l,1. No effect on morphological development or survival was noted in any exposed groups. These data indicate that microcystin does not appear to affect development adversely in the mouse (in vivo or in vitro) or the toad at the doses and exposure parameters used. Copyright © 2002 John Wiley & Sons, Ltd. [source] Expression of the aspartate/glutamate mitochondrial carriers aralar1 and citrin during development and in adult rat tissuesFEBS JOURNAL, Issue 13 2002Araceli Del Arco Aralar1 and citrin are members of the subfamily of calcium-binding mitochondrial carriers and correspond to two isoforms of the mitochondrial aspartate/glutamate carrier (AGC). These proteins are activated by Ca2+ acting on the external side of the inner mitochondrial membrane. Although it is known that aralar1 is expressed mainly in skeletal muscle, heart and brain, whereas citrin is present in liver, kidney and heart, the precise tissue distribution of the two proteins in embryonic and adult tissues is largely unknown. We investigated the pattern of expression of aralar1 and citrin in murine embryonic and adult tissues at the mRNA and protein levels. In situ hybridization analysis indicates that both isoforms are expressed strongly in the branchial arches, dermomyotome, limb and tail buds at early embryonic stages. However, citrin was more abundant in the ectodermal components of these structures whereas aralarl had a predominantly mesenchymal localization. The strong expression of citrin in the liver was acquired postnatally, whereas the characteristic expression of aralar1 in skeletal muscle was detected at E18 and that in the heart began early in development (E11) and was preferentially localized to auricular myocardium in late embryonic stages. Aralar1 was also expressed in bone marrow, T-lymphocytes and macrophages, including Kupffer cells in the liver, indicating that this is the major AGC isoform present in the hematopoietic system. Both aralar1 and citrin were expressed in fetal gut and adult stomach, ovary, testis, and pancreas, but only aralar1 is enriched in lung and insulin-secreting ,,cells. These results show that aralar1 is expressed in many more tissues than originally believed and is absent from hepatocytes, where citrin is the only AGC isoform present. This explains why citrin deficiency in humans (type II citrullinemia) only affects the liver and suggests that aralar1 may compensate for the lack of citrin in other tissues. [source] |