Home About us Contact | |||
Synthetic Wastewater (synthetic + wastewater)
Selected AbstractsComparison of the Heavy Metal Biosorption Capacity of Active, Heat-Inactivated and NaOH-Treated Phanerochaete chrysosporium BiosorbentsENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 1 2004E. Güri Abstract Three different kinds of Phanerochaete chrysosporium (NaOH-treated, heat-inactivated and active) biosorbent were used for the removal of Cd(II) and Hg(II) ions from aquatic systems. The biosorption of Cd(II) and Hg(II) ions on three different forms of Phanerochaete chrysosporium was studied in aqueous solutions in the concentration range of 50,700 mg/L. Maximum biosorption capacities of NaOH-treated, heat-inactivated and active Phanerochaete chrysosporium biomass were found to be 148.37,mg/g, 78.68,mg/g and 68.56,mg/g for Cd(II) as well as 224.67,mg/g, 122.37,mg/g and 88.26,mg/g for Hg(II), respectively. For Cd(II) and Hg(II) ions, the order of affinity of the biosorbents was arranged as NaOH-treated,> heat-inactivated,>,active. The order of the amount of metal ions adsorbed was established as Hg(II),>,Cd(II) on a weight basis, and as Cd(II),>,Hg(II) on a molar basis. Biosorption equilibriums were established in about 60,min. The effect of the pH was also investigated, and maximum rates of biosorption of metal ions on the three different forms of Phanerochaete chrysosporium were observed at pH,6.0. The reusability experiments and synthetic wastewater studies were carried out with the most effective form, i.e., the NaOH-treated Phanerochaete chrysosporium biomass. It was observed that the biosorbent could be regenerated using 10,mM HCl solution, with a recovery of up to 98%, and it could be reused in five biosorption-desorption cycles without any considerable loss in biosorption capacity. The alkali-treated Phanerochaete chrysosporium removed 73% of Cd(II) and 81% of Hg(II) ions from synthetic wastewater. [source] The beneficial role of intermediate clarification in a novel MBR based process for biological nitrogen and phosphorus removalJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 5 2009MinGu Kim Abstract BACKGROUND: A novel membrane bioreactor (MBR) is described, employing an intermediate clarifier. Unlike the established function of a final clarifier in a conventional biological nutrient removal system, the role of an intermediate clarifier has rarely been studied. Thus, this work focused on explaining the fate of nutrients in the intermediate clarifier, as influenced by the hydraulic retention time (HRT) of the preceding anaerobic bioreactor. RESULTS: The system was tested with two different anaerobic/anoxic/aerobic biomass fractions of 0.25/0.25/0.5 (run 1) and 0.15/0.35/0.45 (run 2) using synthetic wastewater. The major findings of the study were that phosphorus (P) removal was affected by the role of the intermediate clarifier. In run 1, P was removed at a rate 0.16 g d,1 in the intermediate clarifier while in run 2, additional P was released at 0.49 g d,1. The nitrogen (N) removal efficiencies were 74 and 75% for runs 1 and 2 respectively, while P removal was 91 and 96%. P uptake by denitrifying phosphate accumulating organisms (DPAOs) accounted for 41,52% of the total uptake in the MBR. CONCLUSIONS: This study found that the intermediate clarifier assisted chemical oxygen demand (COD), N, and P removal. With respect to the fate of P, the intermediate clarifier functioned as an extended anaerobic zone when the HRT of the preceding anaerobic zone was insufficient for P release, and as a pre-anoxic zone when the anaerobic HRT was adequate for P release. Copyright © 2008 Society of Chemical Industry [source] Removal of H2S and volatile organic sulfur compounds by silicone membrane extractionJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 1 2009I. Manconi Abstract BACKGROUND: This study explores an alternative process for the abatement and/or desulfurization of H2S and volatile organic sulfur compounds (VOSC) containing waste streams, which employs a silicone-based membrane to simultaneously remove H2S and VOSC. An extractive membrane reactor allows the selective withdrawal of VOSC and H2S simultaneously from the waste stream, while preventing direct contact between the waste stream and the absorbing solution and/or the biological treatment system. The influence of the sulfur compounds, membrane characteristics, extractant and pH was studied. RESULTS: Sulfide and the VOCS studied, i.e. methanethiol (MT), ethanethiol (ET) and dimethylsulfide (DMS) were removed from the synthetic wastewater using a silicone rubber membrane. Methanethiol showed the highest (8.72 × 10,6 m s,1) overall mass transfer coefficient (kov) and sulfide the lowest kov value (1.23 × 10,6 m s,1). Adsorption of the VOCS into the silicone membrane reduced the overall mass transfer coefficient. The kov when using Fe(III)EDTA, as extractant (5.81 × 10,7 m s,1) for sulfide extraction was one order of magnitude lower than with anaerobic water (2.54 × 10,6 m s,1). On the other hand, the sulfide removal efficiency with Fe(III)EDTA, was higher (84%) compared with anaerobic water (60%) as extractant. An additional mass transfer resistance was formed by elemental sulfur which remained attached to the membrane surface. CONCLUSIONS: Extraction of sulfide and VOCS from a synthetic wastewater solution through a silicone rubber membrane is a feasible process as alternative to the techniques developed to treat VOSC emissions. Optimizing the aqueous absorption liquid can increase the efficiency of extraction based processes. Copyright © 2008 Society of Chemical Industry [source] Surface Modification of Poly(propylene) Microporous Membrane to Improve Its Antifouling Characteristics in an SMBR: O2 Plasma TreatmentPLASMA PROCESSES AND POLYMERS, Issue 1 2008Hai-Yin Yu Abstract Fouling is the major obstacle in membrane processes applied in water and wastewater treatment. To improve the antifouling characteristics of PPHFMMs in an SMBR for wastewater treatment, the PPHFMMs were surface-modified by O2 low temperature plasma treatment. Structural and morphological changes on the membrane surface were characterized by XPS and FE-SEM. The change of surface wettability was monitored by contact angle measurements. Results of XPS clearly indicated that the plasma treatment introduced oxygen containing polar groups on the membrane surface. The static water contact angle of the modified membrane reduced obviously with the increase of plasma treatment time. The relative pure water flux for the modified membranes increased with plasma treatment time up to 1 min, then it decreased with further increase of plasma treatment time. Decreases in the tensile strength and the tensile elongation at break of the modified membranes were also observed. To assess the relation between the plasma treatment and the membrane fouling in an SMBR, filtration for activated sludge was carried out by using synthetic wastewater. After continuous operation in the SMBR for about 75 h, flux recovery were 8.7 and 12.3%, reduction of flux were 91.6 and 87.4% for the nascent and O2 plasma treated PPHFMM for 1 min, relative flux ratio for O2 plasma treated PPHFMM for 1 min was 49.9% higher than that of the nascent PPHFMM. [source] Thermophilic (55,65 °C) and Extreme Thermophilic (70,80 °C) Sulfate Reduction in Methanol and Formate-Fed UASB ReactorsBIOTECHNOLOGY PROGRESS, Issue 5 2004Marcus V. G. Vallero The feasibility of thermophilic (55,65 °C) and extreme thermophilic (70,80 °C) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular sludge previously not exposed to high temperatures. Full methanol and formate degradation at temperatures up to, respectively, 70 and 75 °C, were achieved when operating UASB reactors fed with sulfate rich (COD/SO42 - = 0.5) synthetic wastewater. Methane-producing archaea (MPA) outcompeted sulfate-reducing bacteria (SRB) in the formate-fed UASB reactor at all temperatures tested (65,75 °C). In contrast, SRB outcompeted MPA in methanol-fed UASB reactors at temperatures equal to or exceeding 65 °C, whereas strong competition between SRB and MPA was observed in these reactors at 55 °C. A short-term (5 days) temperature increase from 55 to 65 °C was an effective strategy to suppress methanogenesis in methanol-fed sulfidogenic UASB reactors operated at 55 °C. Methanol was found to be a suitable electron donor for sulfate-reducing processes at a maximal temperature of 70 °C, with sulfide as the sole mineralization product of methanol degradation at that temperature. [source] A Kinetic Model for Suspended and Attached Growth of a Defined Mixed CultureBIOTECHNOLOGY PROGRESS, Issue 3 2005Kawai Tam Kinetic experiments were carried out in a semicontinuous wastewater treatment process called self-cycling fermentation (SCF) using a defined mixed culture and various concentrations of synthetic brewery wastewater. The same consortium, which had been previously identified as Acinetobacter sp., Enterobacter sp., and Candida sp., were used in these experiments. The overall rate of substrate removal was attributable to both suspended microbes and the biofilm that formed during the treatment process. A rate expression was developed for the SCF system for a range of synthetic wastewaters containing glucose and various initial concentrations of ethanol and maltose. The data indicated that substrate removal by the suspended cells was directly related to the biomass concentration. However, substrate removal by the biofilm was apparently not affected by the biofilm thickness and was a function of substrate concentration only. [source] |