Home About us Contact | |||
Synthetic Medium (synthetic + medium)
Selected AbstractsMeasurement of blood clearance time by Limulus G test of Candida -water soluble polysaccharide fraction, CAWS, in miceFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1 2000Kiyoshi Kurihara Abstract The Limulus G test, responsive to ,-1,3- d -glucan, is a well-established method for the detection of invasive fungal infection. We have recently found that Candida albicans released a water-soluble polysaccharide fraction (CAWS) into synthetic medium (Uchiyama et al., FEMS Immunol. Med. Microbiol. 24 (1999) 411,420). CAWS was composed of a mannoprotein-,-glucan complex and activated Limulus factor G, and thus would be similar to the Limulus active substance in patient's blood. In a preliminary investigation, we have found that CAWS is lethal when administered intravenously in a murine system. In this study, we examined the toxicity and then the fate of CAWS in mice. The lethal toxicity was strain-dependent and strain DBA/2 was the most resistant. The toxicity was, at least in part, reduced by salbutamol sulfate and prednisolone treatment in the sensitive strains. On intravenous administration, the half clearance time (t1/2) was approximately 40 min in mice (DBA/2). On intraperitoneal administration, CAWS appeared in the blood with a peak concentration at 1 h. In order to establish a treatment plan, it is important to demonstrate the onset and the termination of deep-seated mycosis. The Limulus G test is suitable for the above purpose; however, it is necessary to fully understand the fate of ,-1,3- d -glucan in patients' blood [source] Production of conjugated linoleic acid by probiotic Lactobacillus acidophilus La-5JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2009M. Macouzet Abstract Aims:, To study the ability of the probiotic culture Lactobacillus acidophilus La-5 to produce conjugated linoleic acid (CLA), which is a potent anti-carcinogenic agent. Methods and Results:, The conversion of linoleic acid to CLA was studied both by fermentation in a synthetic medium and by incubation of washed cells. Accumulation of CLA was monitored by gas chromatography analysis of the biomass and supernatants. While the fermentation conditions applied may not be optimal to observe CLA production in growing La-5 cells, the total CLA surpassed 50% of the original content in the washed cells after 48 h under both aerobic and micro-aerobic conditions. The restriction of oxygen did not increase the yield, but favoured the formation of trans, trans isomers. Conclusions:, The capability of L. acidophilus La-5 to produce CLA is not dependant on the presence of milk fat or anaerobic conditions. Regulation of CLA production in this strain needs to be further investigated to exploit the CLA potential in fermented foods. Significance and Impact of the study:, Knowledge gained through the conditions on the accumulation of CLA would provide further insight into the fermentation of probiotic dairy products. The capacity of the nongrowing cells to produce CLA is also of great relevance for the emerging nonfermented probiotic foods. [source] A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomalaJOURNAL OF APPLIED MICROBIOLOGY, Issue 3 2004A. Vohra Abstract Aim:, Formulation of an inexpensive cane molasses medium for improved cell-bound phytase production by Pichia anomala. Methods and Results:, Cell-bound phytase production by Pichia anomala was compared in synthetic glucose,beef extract and cane molasses media. The yeast was cultivated in 250 ml flasks containing 50 ml of the medium, inoculated with a 12 h-old inoculum (3 × 106 CFU ml,1) and incubated at 25°C for 24 h at 250 rev min,1. Different cultural parameters were optimized in cane molasses medium in batch fermentation. The cell-bound phytase content increased significantly in cane molasses medium (176 U g,1 dry biomass) when compared with the synthetic medium (100 U g,1 dry biomass). In fed-batch fermentation, a marked increase in biomass (20 g l,1) and the phytase yield (3000 U l,1) were recorded in cane molasses medium. The cost of production in cane molasses medium was £0·006 per 1000 U, which is much lower when compared with that in synthetic medium (£0·25 per 1000 U). Conclusions:, An overall 86·6% enhancement in phytase yield was attained in optimized cane molasses medium using fed-batch fermentation when compared with that in synthetic medium. Furthermore, the production in cane molasses medium is cost-effective. Significance and Impact of the Study:, Phytase yield was improved in cane molasses when compared with the synthetic medium, and the cost of production was also significantly reduced. This enzyme can find application in the animal feed industry for improving the nutritional status of feed and combating environmental pollution. [source] Hybrid modeling of inulinase bio-production processJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 4 2010Marcio A. Mazutti Abstract BACKGROUND: A potential application of inulinase in the food industry is the production of fructooligosaccharides (FOS) through transfructosilation of sucrose. Besides their ability to increase the shelf-life and flavor of many products, FOS have many interesting functional properties. The use of an industrial medium may represent a good, cost-effective alternative to produce inulinase, since the activity of the enzyme produced may be improved or at least remain the same compared with that obtained using a synthetic medium. Thus, inulinase production for use in FOS synthesis is of considerable scientific and technological appeal, as is the development of a reliable mathematical model of the process. This paper describes a hybrid neural network approach to model inulinase production in a batch bioreactor using agroindustrial residues as substrate. The hybrid modeling makes use of a series artificial neural network to estimate the kinetic parameters of the process and the mass balance as constitutive equations. RESULTS: The proposed model was shown to be capable of describing the complex behavior of inulinase production employing agroindustrial residues as substrate, so that the mathematical framework developed is a useful tool for simulation of this process. CONCLUSION: The hybrid neural network model developed was shown to be an interesting alternative to estimate model parameters since complete elucidation of the phenomena and mechanisms involved in the fermentation is not required owing to the black-box nature of the ANN used as parameter estimator. Copyright © 2010 Society of Chemical Industry [source] Aerobic biodegradation of MtBE in an upflow fixed bed reactorJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2009Emma Bianchi Abstract BACKGROUND: An aerobic upflow fixed bed reactor (UFBR) was densely colonized by a bacterial consortium, obtained from gasoline polluted waters, able to mineralize MtBE and BTEX. The system was studied in order to determine its capability to degrade the MtBE present in prepared solutions and in real contaminated aquifers and was operating for more than a year. RESULTS: Efficient colonization of the reactor took about 50 days, utilizing bacteria grown in continuous culture in a fermenter connected to the UFBR. During the study the influence of feed concentration of MtBE, temperature and hydraulic retention time (HRT) was analyzed. The system, running at 18 °C on synthetic medium, was fed at an influent MtBE concentration of 27.8 mg L,1 with HRT of 5 h showing 99.98% of MtBE degradation. When working with polluted groundwater, the system achieved 100% BTEX degradation and 99.34% MtBE degradation. CONCLUSION: The UFBR was tested on synthetic medium spiked with MtBE and on groundwater contaminated with MtBE and BTEX at concentrations of 50,60 ppm and a few ppm, respectively. The reactor responded efficiently showing great flexibility and capability of adjustment to different operating conditions with MtBE degradation of nearly 100%. Copyright © 2009 Society of Chemical Industry [source] Production of fructose and ethanol from media with high sucrose concentrations by a mutant of Saccharomyces cerevisiaeJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2001Hasan Atiyeh Abstract The production of enriched fructose syrups and ethanol from a synthetic medium with high sucrose concentrations was studied in a batch process using Saccharomyces cerevisiae ATCC 36858. The results showed that the fructose yield was above 92% of theoretical values in synthetic media with sucrose concentrations between 180,g,dm,3 and 726,g,dm,3. Ethanol yield was about 82% in media with sucrose concentrations up to 451,g,dm,3. A product containing 178,g,dm,3 fructose, which represents 97% of the total sugar content, and 79,g,dm,3 ethanol was obtained using a medium with 360,g,dm,3 sucrose. The fructose fraction in the carbohydrates content in the produced syrups decreased with increases in the initial sucrose concentration. In a medium with initial sucrose concentration of 574,g,dm,3, the fructose content in the produced broth was 59% of the total carbohydrates. Glycerol and fructo-oligosaccharides were also produced in this process. The produced fructo-oligosaccharides started to be consumed when the concentration of sucrose in the media was less than 30% of its initial value. Complete hydrolysis of these sugars was noticed in media with sucrose concentrations below 451,g,dm,3. These findings will be useful in the production of ethanol and high fructose syrups using sucrose-based raw materials with high concentrations of this carbohydrate. © 2001 Society of Chemical Industry [source] Effects of Whey Permeate-Based Medium on the Proximate Composition of Lentinus edodes in the Submerged CultureJOURNAL OF FOOD SCIENCE, Issue 6 2006Xiaojun Jeffrey Wu ABSTRACT:, Biomass production, crude water-soluble polysaccharide (WSP), ash content, mineral profile, and crude protein content were determined for Lentinus edodes mycelia grown on whey permeate (WP)-based medium with lactose content of 4.5% or defined synthetic medium, and harvested after 5, 10, 15, or 20 d of fermentation at 25 °C. Harvesting time and the type of media interact to alter the chemical content of mycelia. Mycelia grown in WP had greater (P < 0.05) WSP and ash than mycelia grown in the synthetic media. A maximum production of WSP was obtained on the 10th day (4.1 × 102± 71 mg WSP/g dried mycelia) from mycelia grown on the WP-based media. Mycelia grown on WP harvested on the 20th day had the highest value in ash content (18 ± 3%). Potassium was found to be the main constituent in the ash of mushroom mycelia, which was followed by phosphorus, sodium, calcium, and magnesium. A steady increase of ash content was only noted in mycelia grown on WP. The calcium content of WP-grown mycelia was at least 10 times higher compared to mycelia grown in the control media regardless the harvesting time. Data in this research suggested that WP was more favorable than the synthetic media in the production of WSP, which is traditionally known for their medicinal value in L. edodes. [source] Influence of water activity and temperature on conidial germination and mycelial growth of ochratoxigenic isolates of Aspergillus ochraceus on grape juice synthetic medium.JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 10 2005Predictive models Abstract The first stages in the development of Aspergillus ochraceus, an ochratoxin A-producing fungus that infects grapes and may grow on them, have been studied on a synthetic nutrient medium similar to grape in composition. Spore germination and mycelial growth have been tested over a water activity (aw) and temperature range which could approximate to the real conditions of fungal development on grapes. Optimal germination and growth were observed at 30 °C for all three isolates tested. Maximal germination rates were detected at 0.96,0.99 aw at 20 °C, while at 10 and 30 °C the germination rates were significantly higher at 0.99 aw. Although this abiotic factor (aw) had no significant influence on mycelial growth, growth rates obtained at 0.98 aw were slight higher than those at other aw levels. Predictive models for the lag phase before spore germination as a function of water activity and temperature have been obtained by polynomial multiple linear regression, and the resulting response surface models have been plotted. Copyright © 2005 Society of Chemical Industry [source] Liquid,liquid extraction of fermentation inhibiting compounds in lignocellulose hydrolysateBIOTECHNOLOGY & BIOENGINEERING, Issue 5 2009R.R.M. Zautsen Abstract Several compounds that are formed or released during hydrolysis of lignocellulosic biomass inhibit the fermentation of the hydrolysate. The use of a liquid extractive agent is suggested as a method for removal of these fermentation inhibitors. The method can be applied before or during the fermentation. For a series of alkanes and alcohols, partition coefficients were measured at low concentrations of the inhibiting compounds furfural, hydroxymethyl furfural, vanillin, syringaldehyde, coniferyl aldehyde, acetic acid, as well as for ethanol as the fermentation product. Carbon dioxide production was measured during fermentation in the presence of each organic solvent to indicate its biocompatibility. The feasibility of extractive fermentation of hydrolysate was investigated by ethanolic glucose fermentation in synthetic medium containing several concentrations of furfural and vanillin and in the presence of decanol, oleyl alcohol and oleic acid. Volumetric ethanol productivity with 6 g/L vanillin in the medium increased twofold with 30% volume oleyl alcohol. Decanol showed interesting extractive properties for most fermentation inhibiting compounds, but it is not suitable for in situ application due to its poor biocompatibility. Biotechnol. Bioeng. 2009;102: 1354,1360. © 2008 Wiley Periodicals, Inc. [source] Production of a Polyester Degrading Extracellular Hydrolase from Thermomonospora fuscaBIOTECHNOLOGY PROGRESS, Issue 5 2002Mona K. Gouda The production of a polyester-degrading hydrolase from the thermophilic actinomycete Thermomonospora fusca was investigated with regard to its potential technical application. Only in the presence of a polyester (random aliphatic-aromatic copolyester from 1,4-butanediol, terephthalic acid, and adipic acid with around 40,50 mol % terephthalic acid in the acid component), the excretion of the extracellular enzyme could be achieved with an optimized synthetic medium using pectin and NH4Cl as nitrogen source. Compared to complex media, a significantly higher specific activity at comparable volumetric yields could be obtained, thus reducing the expenditure for purification. The activity profile in the medium is controlled by a complex process involving (1) induction of enzyme excretion, (2) enzyme adsorption on the hydrophobic polyester surface, (3) inhibition of enzyme generation by monomers produced by polyester cleavage, and (4) enzyme denaturation. Diafiltration with cellulose acetate membranes as the sole downstream processing step led to a product of high purity and with sufficient yield (60% of total activity). Scaling-up from shaking flasks to a fermentor scale of 100 L revealed no specific problems. However, the excretion of the hydrolase by the actinomycete turned out to be inhibited by the degradation products (monomers) of the aliphatic-aromatic copolyester used as inductor for the enzyme production. The crude enzyme exhibited generally similar properties (temperature and pH optimum) as the highly purified hydrolase described previously; however, the storage capability and thermal stability is improved when the crude enzyme solution is diafiltrated. [source] Galectin-1 supports the survival of CD45RA(,) primary myeloma cells in vitroBRITISH JOURNAL OF HAEMATOLOGY, Issue 5 2008Saeid Abroun Summary The survival and proliferation of human myeloma cells are considered to be heavily dependent on the microenvironment of bone marrow (BM). This study confirmed that galectin-1 (Gal-1) and SDF-1, were produced by bone marrow mononuclear cells of myeloma patients. The addition of Gal-1 and SDF-1, to a serum-free synthetic medium, maintained the viability of primary myeloma cells for 2 weeks similar to that before culture. While Gal-1 reduced the viable cell number in CD45RA(+) B cell lines, it maintained the viability of CD45(,) U266 and CD45RA(,)RO(+) ILKM3 myeloma cell lines in the synthetic medium. This was confirmed with the transfection of the PTPRC (CD45) RA, -RB, or -RO gene into CD45(,) U266 cells. The combination of Gal-1 and SDF-1, significantly induced phosphorylation of Akt and IkB, while the phosphorylation of ERK1/2 was significantly reduced in CD45RA(+) U266 and Raji cells but not CD45(,) or CD45RA(,) U266 cells. Furthermore, we confirmed that Gal-1 bound to CD45RA in CD45RA(+) Raji cells, and also physically interacted with ,1-integrin by immunoprecipitation followed by Western blotting and confocal microscopy. The results suggest that Gal-1 has two different actions depending on its binding partner, and supports the survival of CD45RA(,) myeloma cells. [source] |