Synthetic Hydrogels (synthetic + hydrogel)

Distribution by Scientific Domains


Selected Abstracts


Effect of Motif-Programmed Artificial Proteins on the Calcium Uptake in a Synthetic Hydrogel

MACROMOLECULAR BIOSCIENCE, Issue 10 2009
Traian V. Chirila
Abstract Motif-programmed artificial proteins with mineralization-related activity were covalently immobilized onto the surface of a hydrogel, poly(2-hydroxyethyl methacrylate) (PHEMA). We investigated the influence of assaying conditions upon the ability of three selected proteins (PS64, PS382 and PS458) to modulate calcification in vitro. A long-term assay measuring the real amount of calcium phosphate phase in the protein-modified PHEMA showed that all proteins enhanced the uptake of calcium by the hydrogel. For PS382 and PS458, this is a behaviour opposite to that displayed when the same proteins were tested in a free state by a rapid solution assay. Such difference may be attributed to a restricted mobility of the proteins due to immobilization. [source]


Properties and application of poly(methacrylic acid- co -dodecyl methacrylate- cl - N,N -methylene bisacrylamide) hydrogel immobilized Bacillus cereus MTCC 8372 lipase for the synthesis of geranyl acetate

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008
Madan Lal Verma
Abstract A range of fatty acid esters is now being produced commercially with immobilized microbial lipases (glycerol ester hydrolases; EC) in nonaqueous solvents. In this study, a synthetic hydrogel was prepared by the copolymerization of methacrylic acid and dodecyl methacrylate in the presence of a crosslinker, N,N -methylene bisacrylamide. A purified alkaline thermotolerant bacterial lipase from Bacilluscereus MTCC 8372 was immobilized on a poly(methacrylic acid- co -dodecyl methacrylate- cl - N,N -methylene bisacrylamide) hydrogel by an adsorption method. The hydrogel showed a 95% binding efficiency for the lipase. The bound lipase was evaluated for its hydrolytic potential toward various p -nitrophenyl acyl esters with various C chain lengths. The bound lipase showed optimal hydrolytic activity toward p -nitrophenyl palmitate at a pH of 8.5 and a temperature of 55°C. The hydrolytic activity of the hydrogel-bound lipase was enhanced by Hg2+, Fe3+, and NH ions at a concentration of 1 mM. The hydrogel-bound lipase was used to synthesize geranyl acetate from geraniol and acetic acid in n -heptane. The optimization of the reaction conditions, such as catalyst loading, effect of substrate concentration, solvent (n -pentane, n -hexane, n -heptane, n -octane, and n -nonane), reaction time, temperature, molecular sieve (3 Å × 1.5 mm) and scale up (at 50-mL level), was studied. The immobilized lipase (25 mg/mL) was used to perform an esterification in n -alkane(s) that resulted in the synthesis of approximately 82.8 mM geranyl acetate at 55°C in n -heptane under continuous shaking (160 rpm) after 15 h when geraniol and acetic acid were used in a ratio of 100 : 100 mM. The addition of a molecular sieve (3 Å × 1.5 mm) to the reaction system at a concentration of 40 mg/mL in reaction volume (2 mL) resulted in an increase in the conversion of reactants into geranyl acetate (90.0 mM). During the repetitive esterification under optimum conditions, the hydrogel-bound lipase produced ester (37.0 mM) after the eighth cycle of reuse. When the reaction volume was scaled up to 50 mL, the ester synthesized was 58.7 mM under optimized conditions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Hydrogels for Soft Machines

ADVANCED MATERIALS, Issue 7 2009
Paul Calvert
Abstract Hydrogels have applications in surgery and drug delivery, but are never considered alongside polymers and composites as materials for mechanical design. This is because synthetic hydrogels are in general very weak. In contrast, many biological gel composites, such as cartilage, are quite strong, and function as tough, shock-absorbing structural solids. The recent development of strong hydrogels suggests that it may be possible to design new families of strong gels that would allow the design of soft biomimetic machines, which have not previously been possible. [source]


Biodegradation of different synthetic hydrogels made of polyethylene glycol hydrogel/RGD-peptide modifications: an immunohistochemical study in rats

CLINICAL ORAL IMPLANTS RESEARCH, Issue 2 2009
Monika Herten
Abstract Aim: The aim of the present study was to investigate the pattern of biodegradation of different polyethylene glycol (PEG) hydrogel/RGD-peptide modifications in rats. Material and methods: Two different hydrogels were employed: (i) a combination of four-arm PEG-thiol, Mn=2.3 kDa, and eight-arm PEG-acrylate, Mn=2.3 kDa (PEG1); and (ii) a combination of four-arm PEG-thiol, Mn=2.3 kDa, and four-arm PEG-acrylate, Mn=15 kDa (PEG2). Both PEG1 and PEG2 were either used alone or combined with a nine amino acid cys-RGD peptide (RGD). A non-cross-linked porcine type I and III collagen membrane [BioGide® (BG)] served as control. Specimens were randomly allocated in unconnected subcutaneous pouches separated surgically on the back of 60 wistar rats, which were divided into six groups (1, 2, 4, 8, 16, and 24 weeks). Specimens were prepared for histological (tissue integration, foreign body reactions, biodegradation) and immunohistochemical (angiogenesis) analysis. Results: All materials investigated revealed unimpeded and comparable tissue integration without any signs of foreign body reactions. While BG exhibited transmembraneous blood vessel formation at 1 week, all PEG specimens were just surrounded by a well-vascularized connective tissue. The hydrolytic disruption of PEG1 and PEG1/RGD specimens was associated with an ingrowth of blood vessels at 4 weeks. Biodegradation times were highest for PEG1 (24 weeks)>PEG1/RGD (16 weeks)>BG (4 weeks)>PEG2=PEG2/RGD (2 weeks). Conclusion: Within the limits of the present study, it was concluded that (i) all materials investigated revealed a high biocompatibility and tissue integration, and (ii) hydrogel biodegradation was dependent on PEG composition. [source]