Synthetic Activity (synthetic + activity)

Distribution by Scientific Domains


Selected Abstracts


Enhancement of activity and selectivity in lipase-catalyzed transesterification in ionic liquids by the use of additives

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2007
Francisco J Hernández-Fernández
Abstract BACKGROUND: Seven ionic liquids (ILs) based on 1-alkyl-3-methylimidazolium cation in combination with hexafluorophosphate and bis{(trifluoromethyl)sulfonyl}imide anions were tested as reaction media for lipase-catalyzed transesterification in low water conditions. With the aim of improving the activity and/or selectivity of the lipase, various treatments were applied to ionic liquid media such as equilibration with aqueous solutions of salts, NaHCO3 or Na2CO3, or the addition of a catalytic amount of a non-reactive organic base to the reaction mixture, triethylamine. RESULTS: The treated ionic liquids were shown to be excellent media for lipase-catalyzed ester synthesis by transesterification compared with conventional organic solvents, such as n -hexane. All treatments were found to enhance the synthetic activity of the enzyme, the best results being achieved with the addition of triethylamine. The addition of a catalytic amount of this base to the ILs resulted in a significant increase in both the synthetic activity and selectivity values. For instance, the synthetic activity in [emim+][TfN2,] was enhanced more than 12 times and the selectivity increased from 86% to 95% when triethylamine was used. CONCLUSION: These treatments could be easy-to-use approaches to improve the efficiency of enzymatic reactions in ionic liquids when the reaction does not proceed smoothly. Copyright © 2007 Society of Chemical Industry [source]


Quantification of expression levels of cellular differentiation markers does not support a general shift in the cellular phenotype of osteoarthritic chondrocytes

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2003
Pia Margarethe Gebhard
Abstract Many studies have shown increased anabolic activity in osteoarthritic cartilage and have suggested changes in the cellular phenotypes of articular chondrocytes. Most of these studies relied on non-quantitative technologies, which did not allow the estimation of the relative importance of the different differentiation phenomena. In the present study, we developed and used quantitative PCR assays for collagen types I, II(total), IIA, III, and X as marker genes indicating cellular synthetic activity (collagen type II) as well as differentiation pattern of chondrocytes (collagen types I, IIA, III, and X) and quantified these genes in normal, early degenerative, and late stage osteoarthritic cartilage in parallel. At first sight, our results confirmed previously published data showing hardly any expression of collagen genes in normal and significantly enhanced expression in osteoarthritic cartilage. This included collagen types II, III, and IIA, but also collagen types I(,1) and X. However, if one considers the ratios of the various markers of chondrocytic differentiation in comparison to collagen type II, the main synthetic product of differentiated chondrocytes, no shift in the cellular phenotype was detectable. In fact, expression ratios remained constant or were even decreased in osteoarthritic cartilage. Our results confirm that normal adult human articular chondrocytes display hardly any expression activity of the collagen types investigated, whereas osteoarthritic chondrocytes show very increased synthetic activity. The largely unchanged ratios of collagen subtypes investigated indicate that no general shift in the cellular phenotype does occur in osteoarthritic cartilage as suggested by previous investigations. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


Ultrastructural and immunocytochemical analyses of opioid treatment effects on PC3 prostatic cancer cells

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2004
Beatrice Baldelli
Abstract Some opioid peptides are able to inhibit the growth of human prostatic cancer cells; in particular, the [D-Ala2,D-Leu5] enkephalin (DADLE) reduces PC3 cell growth. In order to understand how DADLE decreases cell proliferation, we investigated, by electron microscopy, its effects on PC3 cellular components. PC3 cells were incubated with DADLE and processed for both ultrastructural morphology and immunoelectron microscopy. Some cells were incubated with BrU to determine the transcriptional rate. BrU and DADLE molecules were detected by immunogold techniques and the labeling was quantitatively evaluated. Modifications of some cytoplasmic and nuclear components were observed in DADLE-treated cells. Moreover, treated cells incorporated lower amounts of BrU than control cells. DADLE molecules were located in the cytoplasm and in the nucleus, especially on mRNA transcription and early splicing sites. Our data suggest that DADLE is able to slow down the synthetic activity of PC3 cells, perhaps interfering with nuclear functions. Microsc. Res. Tech. 64:243,249, 2004. © 2004 Wiley-Liss, Inc. [source]


Vital Aspects of Fallopian Tube Physiology in Pigs

REPRODUCTION IN DOMESTIC ANIMALS, Issue 4 2002
RHF Hunter
Contents This essay reviews four topical aspects of Fallopian tube physiology that bear on either successful fertilization or early development of the zygote. An initial focus is on glycoprotein secretions of the duct that accumulate as a viscous mucus in the caudal isthmus. Because this is the site of the pre-ovulatory sperm reservoir, an involvement of the secretions is considered in: preventing uterine and ampullary tubal fluids from entering the functional sperm reservoir; removing residual male secretions from the sperm surface; deflecting spermatozoa towards endosalpingeal organelles and reducing flagellar beat before ovulation. The subtle prompting of flagellar movement with impending ovulation is examined in terms of potential reactivation mechanisms, with overall control attributed to increasing secretion of progesterone. The site of full capacitation and the acrosome reaction in a fertilizing spermatozoon is then debated, with strong arguments pointing to completion of these processes in the specific fluids at the ampullary-isthmic junction. Finally, the synthetic activity of cumulus cells released at ovulation as a paracrine tissue in the Fallopian tube is highlighted with reference to steroid hormones, peptides and cytokines. Not only does the suspension of granulosa-derived cells influence the process of fertilization, but also it may amplify oocyte or embryonic signals to the endosalpinx and ipsilateral ovary. [source]