Home About us Contact | |||
Syndrome Families (syndrome + family)
Selected AbstractsDisruption of transport activity in a D93H mutant thiamine transporter 1, from a Rogers Syndrome familyFEBS JOURNAL, Issue 22 2003Dana Baron Rogers syndrome is an autosomal recessive disorder resulting in megaloblastic anemia, diabetes mellitus, and sensorineural deafness. The gene associated with this disease encodes for thiamine transporter 1 (THTR1), a member of the SLC19 solute carrier family including THTR2 and the reduced folate carrier (RFC). Using transient transfections into NIH3T3 cells of a D93H mutant THTR1derived from a Rogers syndrome family, we determined the expression, post-translational modification, plasma membrane targeting and thiamine transport activity. We also explored the impact on methotrexate (MTX) transport activity of a homologous missense D88H mutation in the human RFC, a close homologue of THTR1. Western blot analysis revealed that the D93H mutant THTR1 was normally expressed and underwent a complete N -glycosylation. However, while this mutant THTR1 was targeted to the plasma membrane, it was completely devoid of thiamine transport activity. Consistently, introduction into MTX transport null cells of a homologous D88H mutation in the hRFC did not result in restoration of MTX transport activity, thereby suggesting that D88 is an essential residue for MTX transport activity. These results suggest that the D93H mutation does not interfere with transporter expression, glycosylation and plasma membrane targeting. However, the substitution of this negatively charged amino acid (Asp93) by a positively charged residue (His) in an extremely conserved region (the border of transmembrane domain 2/intracellular loop 2) in the SLC19 family, presumably inflicts deleterious structural alterations that abolish thiamine binding and/or translocation. Hence, this functional characterization of the D93H mutation provides a molecular basis for Rogers syndrome. [source] High frequency of exon deletions and putative founder effects in French Canadian Lynch syndrome families,HUMAN MUTATION, Issue 8 2009George Chong Abstract Lynch syndrome is one of the most common autosomal dominantly inherited cancer syndromes. Mutations in MLH1, MSH2, MSH6, and PMS2 account for greater than 98% of reported mutations in Lynch syndrome families. It has been reported that large genomic deletions in MLH1 and MSH2 are a frequent cause of Lynch syndrome in certain populations. Using a multimodal approach, we have identified mutations in MLH1, MSH2, and MSH6 in French Canadian families fulfilling the Amsterdam criteria for Lynch syndrome and who displayed abnormal staining for at least one of the Lynch syndrome proteins. Mutations were identified in 28 of our 29 French Canadian probands (97%). A total of 18 distinct mutations (nine in MLH1, seven in MSH2, two in MSH6) were identified, of which six (33%) were genomic exon deletions. Another four (22%) resulted in exon deletions in cDNA alone. Three (17%) are novel mutations. Five of these 18 mutations were detected in more than one distinct family (four in MLH1, one in MSH2) and haplotype analysis suggests the possibility of founder effects. Fifteen of the 29 (52%) families carried one of these five putative founder mutations. These findings may simplify genetic testing for Lynch syndrome in French Canadians. © 2009 Wiley-Liss, Inc. [source] Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome,HUMAN MUTATION, Issue 2 2009Marietta E. Kovacs Abstract Several different genetic alterations in the etiology of Lynch syndrome (hereditary nonpolyposis colorectal cancer [HNPCC]) are known, mostly point mutations and genomic rearrangements in 1 of at least 3 mismatch-repair (MMR) genes. However, no susceptibility factor has yet been identified in a significant part (30,50%) of clinicopathologically well-defined HNPCC families, suggesting the presence of other predisposing mechanisms. In a set of probands from 27 Lynch syndrome families who lacked evidence of a germline mutation in either the MSH2 or MLH1 gene, we performed genomic deletion screening with the use of multiplex ligation-dependent probe amplification (MLPA) and sequencing. We used immunohistochemistry (IHC) and microsatellite instability (MSI) analyses on samples of the probands of all families. Comparative analysis of mRNA transcripts was performed on blood leukocyte,derived samples from mutation carriers and noncarrier controls. We report that large germline deletions encompassing the last exons of the TACSTD1 gene, upstream of MSH2, cosegregate with the HNPCC phenotype in 19% (5/27) of families tested. The tumors of the carriers show high-level MSI and MSH2 protein loss. We show that these deletions, by removing the transcriptional termination sequences of the upstream gene, give rise to multiple TACSTD1/MSH2 fusion transcripts. Our results provide evidence that deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Thus, analysis of the 3, region of the TACSTD1 gene should be included in the routine mutation screening protocols for HNPCC. Hum Mutat 30, 197,203, 2009. © 2009 Wiley-Liss, Inc. [source] Role of the NOD2 genotype in the clinical phenotype of Blau syndrome and early-onset sarcoidosisARTHRITIS & RHEUMATISM, Issue 1 2009Ikuo Okafuji Objective Blau syndrome and its sporadic counterpart, early-onset sarcoidosis (EOS), share a phenotype featuring the symptom triad of skin rash, arthritis, and uveitis. This systemic inflammatory granulomatosis is associated with mutations in the NOD2 gene. The aim of this study was to describe the clinical manifestations of Blau syndrome/EOS in Japanese patients and to determine whether the NOD2 genotype and its associated basal NF-,B activity predict the Blau syndrome/EOS clinical phenotype. Methods Twenty Japanese patients with Blau syndrome/EOS and NOD2 mutations were recruited. Mutated NOD2 was categorized based on its basal NF-,B activity, which was defined as the ratio of NF-,B activity without a NOD2 ligand, muramyldipeptide, to NF-,B activity with muramyldipeptide. Results All 9 mutations, including E383G, a novel mutation that was identified in 20 patients with Blau syndrome/EOS, were detected in the centrally located NOD region and were associated with ligand-independent NF-,B activation. The median age of the patients at disease onset was 14 months, although in 2 patients in Blau syndrome families (with mutations R334W and E383G, respectively) the age at onset was 5 years or older. Most patients with Blau syndrome/EOS had the triad of skin, joint, and ocular symptoms, the onset of which was in this order. Clinical manifestations varied even among familial cases and patients with the same mutations. There was no clear relationship between the clinical phenotype and basal NF-,B activity due to mutated NOD2. However, when attention was focused on the 2 most frequent mutations, R334W and R334Q, R334W tended to cause more obvious visual impairment. Conclusion NOD2 genotyping may help predict disease progression in patients with Blau syndrome/EOS. [source] CARD15 mutations in familial granulomatosis syndromes: A study of the original Blau syndrome kindred and other families with large-vessel arteritis and cranial neuropathyARTHRITIS & RHEUMATISM, Issue 11 2002Xiaoju Wang Objective To analyze the CARD15 gene in families with heritable multi-organ granulomatoses, including the original Blau syndrome kindred as well as other families with related granulomatous conditions. Methods Linkage mapping was performed in 10 families. Observed recombination events were used to exclude regions centromeric or telomeric to 16q12.1, and the Blau gene critical region was refined to <3 cM, corresponding to a physical distance of 3.5 megabasepairs. Based on its known biochemical function, CARD15 was analyzed as a positional candidate for the Blau syndrome susceptibility gene, by direct DNA sequencing. Results These studies resulted in the identification, in 5 of the families, of 2 sequence variants at position 334 of the gene product (R334W and R334Q). Affected family members from the original Blau syndrome kindred were heterozygous for the R334W missense mutation; mutations at the same position were also observed in several unrelated Blau syndrome families, some of whose phenotypes included large-vessel arteritis and cranial neuropathy. The missense mutations segregated with the disease phenotype in the families, and were not seen in 208 control alleles. Conclusion These findings demonstrate that CARD15 is an important susceptibility gene for Blau syndrome and for other familial granulomatoses that display phenotypic traits beyond those of classic Blau syndrome. [source] Disruption of transport activity in a D93H mutant thiamine transporter 1, from a Rogers Syndrome familyFEBS JOURNAL, Issue 22 2003Dana Baron Rogers syndrome is an autosomal recessive disorder resulting in megaloblastic anemia, diabetes mellitus, and sensorineural deafness. The gene associated with this disease encodes for thiamine transporter 1 (THTR1), a member of the SLC19 solute carrier family including THTR2 and the reduced folate carrier (RFC). Using transient transfections into NIH3T3 cells of a D93H mutant THTR1derived from a Rogers syndrome family, we determined the expression, post-translational modification, plasma membrane targeting and thiamine transport activity. We also explored the impact on methotrexate (MTX) transport activity of a homologous missense D88H mutation in the human RFC, a close homologue of THTR1. Western blot analysis revealed that the D93H mutant THTR1 was normally expressed and underwent a complete N -glycosylation. However, while this mutant THTR1 was targeted to the plasma membrane, it was completely devoid of thiamine transport activity. Consistently, introduction into MTX transport null cells of a homologous D88H mutation in the hRFC did not result in restoration of MTX transport activity, thereby suggesting that D88 is an essential residue for MTX transport activity. These results suggest that the D93H mutation does not interfere with transporter expression, glycosylation and plasma membrane targeting. However, the substitution of this negatively charged amino acid (Asp93) by a positively charged residue (His) in an extremely conserved region (the border of transmembrane domain 2/intracellular loop 2) in the SLC19 family, presumably inflicts deleterious structural alterations that abolish thiamine binding and/or translocation. Hence, this functional characterization of the D93H mutation provides a molecular basis for Rogers syndrome. [source] ABCD syndrome is caused by a homozygous mutation in the EDNRB geneAMERICAN JOURNAL OF MEDICAL GENETICS, Issue 3 2002Joke B.G.M. Verheij Abstract ABCD syndrome is an autosomal recessive syndrome characterized by albinism, black lock, cell migration disorder of the neurocytes of the gut (Hirschsprung disease [HSCR]), and deafness. This phenotype clearly overlaps with the features of the Shah-Waardenburg syndrome, comprising sensorineural deafness; hypopigmentation of skin, hair, and irides; and HSCR. Therefore, we screened DNA of the index patient of the ABCD syndrome family for mutations in the endothelin B receptor (EDNRB) gene, a gene known to be involved in Shah-Waardenburg syndrome. A homozygous nonsense mutation in exon 3 (R201X) of the EDNRB gene was found. We therefore suggest that ABCD syndrome is not a separate entity, but an expression of Shah-Waardenburg syndrome. © 2002 Wiley-Liss, Inc. [source] |