Home About us Contact | |||
Synaptic Inputs (synaptic + input)
Kinds of Synaptic Inputs Selected AbstractsRhythmogenesis in Vasopressin CellsJOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2004C. H. Brown Abstract Many neurones in the central nervous system possess intrinsic pattern-generating properties, including vasopressin magnocellular neurosecretory cells. Synaptic input to vasopressin cells is not rhythmically patterned and yet these neurones fire action potentials in a ,phasic' activity pattern comprised of alternating periods of activity and silence that each last tens of seconds. This review describes the intrinsic and extrinsic mechanisms that generate phasic activity in vasopressin cells, highlighting recent work that has shown phasic activity to result from feedback modulation of synaptic inputs, and of intrinsic membrane properties, by peptides released from the dendrites of vasopressin cells. [source] Synaptic input of ON-bipolar cells onto the dopaminergic neurons of the mouse retinaTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 11 2010Massimo Contini Abstract In the retina, dopamine fulfills a crucial role in neural adaptation to photopic illumination, but the pathway that carries cone signals to the dopaminergic amacrine (DA) cells was controversial. We identified the site of ON-cone bipolar input onto DA cells in transgenic mice in which both types of catecholaminergic amacrine (CA) cells were labeled with green fluorescent protein or human placental alkaline phosphatase (PLAP). In confocal Z series of retinal whole mounts stained with antibodies to tyrosine hydroxylase (TH), DA cells gave rise to varicose processes that descended obliquely through the scleral half of the inner plexiform layer (IPL) and formed a loose, tangential plexus in the middle of this layer. Comparison with the distribution of the dendrites of type 2 CA cells and examination of neurobiotin-injected DA cells proved that their vitreal processes were situated in stratum S3 of the IPL. Electron microscope demonstration of PLAP activity showed that bipolar cell endings in S3 established ribbon synapses onto a postsynaptic dyad in which one or both processes were labeled by a precipitate of lead phosphate and therefore belonged to DA cells. In places, the postsynaptic DA cell processes returned a reciprocal synapse onto the bipolar endings. Confocal images of sections stained with antibodies to TH, kinesin Kif3a, which labels synaptic ribbons, and glutamate or GABAA receptors, confirmed that ribbon-containing endings made glutamatergic synapses onto DA cells processes in S3 and received from them GABAergic synapses. The presynaptic ON-bipolar cells most likely belonged to the CB3 (type 5) variety. J. Comp. Neurol. 518:2035,2050, 2010. © 2010 Wiley-Liss, Inc. [source] Characterization of dendritic spines in the Drosophila central nervous systemDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2009Florian Leiss Abstract Dendritic spines are a characteristic feature of a number of neurons in the vertebrate nervous system and have been implicated in processes that include learning and memory. In spite of this, there has been no comprehensive analysis of the presence of spines in a classical genetic system, such as Drosophila, so far. Here, we demonstrate that a subset of processes along the dendrites of visual system interneurons in the adult fly central nervous system, called LPTCs, closely resemble vertebrate spines, based on a number of criteria. First, the morphology, size, and density of these processes are very similar to those of vertebrate spines. Second, they are enriched in actin and devoid of tubulin. Third, they are sites of synaptic connections based on confocal and electron microscopy. Importantly, they represent a preferential site of localization of an acetylcholine receptor subunit, suggesting that they are sites of excitatory synaptic input. Finally, their number is modulated by the level of the small GTPase dRac1. Our results provide a basis to dissect the genetics of dendritic spine formation and maintenance and the functional role of spines. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Neuronal differentiation and long-term survival of newly generated cells in the olfactory midbrain of the adult spiny lobster, Panulirus argusDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2001Manfred Schmidt Abstract The fate of continuously generated cells in the soma clusters of the olfactory midbrain of adult spiny lobsters, Panulirus argus, was investigated by in vivo pulse-chase experiments with the proliferation marker 5-bromo-2,-deoxyuridine (BrdU) combined with immunostainings for neuropeptides of mature neurons. A BrdU injection after a survival time (ST) of 14 h labeled about 100 nuclei in the lateral soma clusters (LC), comprised of projection neurons, and about 30 nuclei in the medial soma clusters (MC), comprised of local interneurons. The BrdU-positive nuclei were confined to small regions at the inside of these clusters, which also contain nuclei in different phases of mitosis and thus represent proliferative zones. After STs of 2 weeks or 3 months, the number of BrdU-positive nuclei was doubled, indicating a mitosis of all originally labeled cells. Dependent on ST, the BrdU-positive nuclei were translocated from the proliferative zones towards the outside of the clusters, where somata of mature neurons reside. Immunostainings with antibodies to the neuropeptides FMRFamide and substance P, both of which label a large portion of somata in the MC and a pair of giant neurons projecting into the LC, revealed that in both clusters the proliferative zones are surrounded by, but are themselves devoid of, labeling. In the MC, some BrdU-positive somata were double-labeled by the FMRFamide antibody after an ST of 3 months, and by the substance P antibody after STs of 6 and 11/14 months, but not after 3 months. In the LC, BrdU-positive somata after an ST of 3 months partially and after 6 and 11/14 months widely overlapped with the arborizations of the giant neurons, indicating the establishment of synaptic input. The experiments show that cells generated in proliferative zones in the LC and MC of adult spiny lobsters after a final mitosis differentiate into neurons within months, survive for at least 1 year, and are integrated into the circuitry of the olfactory midbrain. A new hypothesis about the mechanism of adult neurogenesis in the central olfactory pathway of decapod crustaceans is developed, linking it to neurogenesis during embryonic and larval development. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 181,203, 2001 [source] Differential loss and preservation of glutamate receptor function in bipolar cells in the rd10 mouse model of retinitis pigmentosaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009Theresa Puthussery Abstract Photoreceptor degenerations can trigger morphological alterations in second-order neurons, however, the functional implications of such changes are not well known. We conducted a longitudinal study, using whole-cell patch-clamp, immunohistochemistry and electron microscopy to correlate physiological with anatomical changes in bipolar cells of the rd10 mouse , a model of autosomal recessive retinitis pigmentosa. Rod bipolar cells (RBCs) showed progressive changes in mGluR6-induced currents with advancing rod photoreceptor degeneration. Significant changes in response amplitude and kinetics were observed as early as postnatal day (P)20, and by P45 the response amplitudes were reduced by 91%, and then remained relatively stable until 6 months. These functional changes correlated with the loss of rod photoreceptors and mGluR6 receptor expression. Moreover, we showed that RBCs make transient ectopic connections with cones during progression of the disease. At P45, ON-cone bipolar cells (ON-CBCs) retain mGluR6 responses for longer periods than the RBCs, but by about 6 months these cells also strongly downregulate mGluR6 expression. We propose that the relative longevity of mGluR6 responses in CBCs is due to the slower loss of the cones. In contrast, ionotropic glutamate receptor expression and function in OFF-CBCs remains normal at 6 months despite the loss of synaptic input from cones. Thus, glutamate receptor expression is differentially regulated in bipolar cells, with the metabotropic receptors being absolutely dependent on synaptic input. These findings define the temporal window over which bipolar cells may be receptive to photoreceptor repair or replacement. [source] Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retinaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007Patricia R. Jusuf Abstract Melanopsin is a photopigment expressed in retinal ganglion cells, which are intrinsically photosensitive and are also involved in retinal circuits arising from rod and cone photoreceptors. This circuitry, however, is poorly understood. Here, we studied the morphology, distribution and synaptic input to melanopsin-containing ganglion cells in a New World monkey, the common marmoset (Callithrix jacchus). The dendrites of melanopsin-containing cells in marmoset stratify either close to the inner nuclear layer (outer stratifying), or close to the ganglion cell layer (inner stratifying). The dendritic fields of outer-stratifying cells tile the retina, with little overlap. However, the dendritic fields of outer-stratifying cells largely overlap with the dendritic fields of inner-stratifying cells. Thus, inner-stratifying and outer-stratifying cells may form functionally independent populations. The synaptic input to melanopsin-containing cells was determined using synaptic markers (antibodies to C-terminal binding protein 2, CtBP2, for presumed bipolar synapses, and antibodies to gephyrin for presumed amacrine synapses). Both outer-stratifying and inner-stratifying cells show colocalized immunoreactive puncta across their entire dendritic tree for both markers. The density of CtBP2 puncta on inner dendrites was about 50% higher than that on outer dendrites. The density of gephyrin puncta was comparable for outer and inner dendrites but higher than the density of CtBP2 puncta. The inner-stratifying cells may receive their input from a type of diffuse bipolar cell (DB6). Our results are consistent with the idea that both outer and inner melanopsin cells receive bipolar and amacrine input across their dendritic tree. [source] Developmental expression of Na+ currents in mouse Purkinje neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2006Mark Fry Abstract As Purkinje neurons mature during postnatal development, they change from electrically quiescent to active and exhibit high frequency spontaneous action potentials. This change in electrical activity is determined by both alteration in ion channel expression and the acquisition of synaptic input. To gain a better understanding of the development the intrinsic electrical properties of these neurons, acutely isolated Purkinje neurons from mice aged postnatal day 4 (P4) to P18 were examined. This included recording action potential frequency, threshold, height and slope, and input resistance and capacitance. Changes in a number of these properties were observed, suggesting significant changes in voltage-gated Na+ currents. Because voltage-gated Na+ currents, including the transient, resurgent and persistent currents, are known to play important roles in generating spontaneous action potentials, the developmental changes in these currents were examined. A large increase in the density of transient current, resurgent current and persistent current was observed at times corresponding with changes in action potential properties. Interestingly, the developmental up-regulation of the persistent current and resurgent current occurred at rate which was faster than the up-regulation of the transient current. Moreover, the relative amplitudes of the persistent and resurgent currents increased in parallel, suggesting that they share a common basis. The data indicate that developmental up-regulation of Na+ currents plays a key role in the acquisition of Purkinje neuron excitability. [source] Electrical and neurotransmitter activity of mature neurons derived from mouse embryonic stem cells by Sox-1 lineage selection and directed differentiationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2004R. J. Lang Abstract Sx1TV2/16C is a mouse embryonic stem (ES) cell line in which one copy of the Sox1 gene, an early neuroectodermal marker, has been targeted with a neomycin (G418) selection cassette. A combination of directed differentiation with retinoic acid and G418 selection results in an enriched neural stem cell population that can be further differentiated into neurons. After 6,7 days post-plating (D6,7PP) most neurons readily fired tetrodotoxin (TTX)-sensitive action potentials due to the expression of TTX-sensitive Na+ and tetraethylammonium (TEA)-sensitive K+ channels. Neurons reached their maximal cell capacitance after D6,7PP; however, ion channel expression continued until at least D21PP. The percentage of cells receiving spontaneous synaptic currents (s.s.c.) increased with days in culture until 100% of cells received a synaptic input by D20PP. Spontaneous synaptic currents were reduced in amplitude and frequency by TTX, or upon exposure to a Ca2+ -free, 2.5 mm Mg2+ saline. S.s.c. of rapid decay time constants were preferentially blocked by the nonNMDA glutamatergic receptor antagonists CNQX or NBQX. Ca2+ levels within ES cell-derived neurons increased in response to glutamate receptor agonists l -glutamate, AMPA, N -methyl- d -aspartate (NMDA) and kainic acid and to acetylcholine, ATP and dopamine. ES cell-derived neurons also generated cationic and Cl, -selective currents in response to NMDA and glycine or GABA, respectively. It was concluded that ES-derived neurons fire action potentials, receive excitatory and inhibitory synaptic input and respond to various neurotransmitters in a manner akin to primary central neurons. [source] Convergence of excitatory and inhibitory inputs onto CCK-containing basket cells in the CA1 area of the rat hippocampusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004Ferenc Mátyás Abstract The number and distribution of excitatory and inhibitory inputs affect the integrative properties of neurons. These parameters have been studied recently for several hippocampal neuron populations. Besides parvalbumin- (PV) containing cells that include basket and axo-axonic cells, cholecystokinin (CCK)-containing interneurons also form a basket cell population with several properties distinct from PV cells. Here, at the light microscopic level, we reconstructed the entire dendritic tree of CCK-immunoreactive (IR) basket cells to describe their geometry, the total length and laminar distribution of their dendrites. This was followed by an electron microscopic analysis of serial ultrathin sections immunostained against ,-aminobutyric acid, to estimate the density of excitatory and inhibitory synapses on their somata, axon initial segments and different subclasses of dendrites. The dendritic tree of CCK-IR basket cells has an average length of 6300 µm and penetrates all layers. At the electron microscopic level, CCK basket cells receive dendritic inputs with a density of 80,230 per 100 µm. The ratio of inhibitory inputs is relatively high (35%) and increases towards the soma (83%). The total numbers of excitatory and inhibitory synapses converging onto CCK-IR cells are ,,8200. Comparison of the two, neurochemically distinct basket cells reveals that CCK-containing basket cells receive much less synaptic input than PV cells; however, the relative weight of inhibition is higher on CCK cells. Additional differences in their anatomical and physiological properties predict that CCK basket cells are under a more diverse, elaborate control than PV basket cells, and thus the function of the two populations must be different. [source] Postsynaptic calcium contributes to reinforcement in a three-neuron network exhibiting associative plasticityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2004P. M. Balaban Abstract We show that activation of a single serotonergic cell is sufficient to trigger long-term associative enhancement of synaptic input to the withdrawal interneuron in a simple network consisting of three interconnected identified cells in the nervous system of terrestrial snail Helix. 1,2-bis (2-aminophenoxy) Ethane- N,N,N,,N,-tetraacetic acid (BAPTA) injection in the postsynaptic neuron abolishes the pairing-specific enhancement of synaptic input. Activation of a single modulatory cell that we used to reinforce the synaptic input induced an increase of the intracellular [Ca2+] in the ipsilateral withdrawal interneuron without any changes of its membrane potential or input resistance. Similar changes in intracellular [Ca2+] were observed in the same withdrawal interneuron under bath application of 10,5 m serotonin. Responses to repeated glutamate applications to the soma of synaptically isolated withdrawal interneurons increased after 10 min of serotonin or thapsigargin bath application, but were absent in conditions of preliminary BAPTA intracellular injection, significantly decreased under heparin injection. Thus, activity of a single modulatory cell may mediate reinforcement via an increase of [Ca2+] in the postsynaptic cell in a simple network consisting of neurons with defined behavioural roles. [source] Analysis of the function of GABAB receptors on inhibitory afferent neurons of Purkinje cells in the cerebellar cortex of the ratEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002Marta Than Abstract Purkinje cells, the output neurons of the cerebellar cortex, receive inhibitory input from basket, stellate and neighbouring Purkinje cells. The aim of the present study was to clarify the role of GABAB receptors on neurons giving inhibitory input to Purkinje cells. In sagittal slices prepared from the cerebellar vermis of the rat, the GABAB receptor agonist baclofen lowered the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) recorded in Purkinje cells. These effects were prevented by the GABAB receptor antagonist CGP 55845. Two mechanisms were involved in the depression of the inhibitory input to Purkinje cells. The first mechanism was suppression of the firing of basket, stellate and Purkinje cells. The second mechanism was presynaptic inhibition of GABA release from terminals of the afferent axons. This was indicated by the finding that baclofen decreased the amplitude of IPSCs occurring in Purkinje cells synchronously with action potentials recorded in basket cells. A further support for the presynaptic inhibition is the observation that baclofen decreased the amplitude of autoreceptor currents which are due to activation of GABAA autoreceptors at axon terminals of basket cells by synaptically released GABA. The presynaptic inhibition was partly due to direct inhibition of the vesicular release mechanism, because baclofen lowered the frequency of miniature IPSCs recorded in Purkinje cells in the presence of cadmium and in the presence of tetrodotoxin plus ionomycin. The results show that activation of GABAB receptors decreased GABAA receptor-mediated synaptic input to cerebellar Purkinje cells both by lowering the firing rate of the inhibitory input neurons and by inhibiting GABA release from their axon terminals with a presynaptic mechanism. [source] Role of GABAergic neurones in the nucleus tractus solitarii in modulation of cardiovascular activityEXPERIMENTAL PHYSIOLOGY, Issue 9 2010Jasenka Zubcevic GABAergic neurones are interspersed throughout the nucleus tractus solitarii (NTS), and their tonic activity is crucial to the maintenance of cardiorespiratory homeostasis. However, the mechanisms that regulate the magnitiude of GABAergic inhibition in the NTS remain unknown. We hypothesized that the level of GABAergic inhibition is proportionally regulated by the level of excitatory synaptic input to the NTS from baroreceptors. Using the in situ working heart,brainstem preparation in normotensive and spontaneously hypertensive rats, we blocked GABAA receptor-mediated neurotransmission in the NTS with gabazine (a specific GABAA receptor antagonist) at two levels of perfusion pressure (low PP, 60,70 mmHg; and high PP, 105,125 mmHg) while monitoring the immediate changes in cardiorespiratory variables. In normotensive rats, gabazine produced an immediate bradycardia consistent with disinhibition of NTS circuit neurones that regulate heart rate (HR) which was proportional to the level of arterial pressure (,HR at low PP, ,57 ± 9 beats min,1; at high PP, ,177 ± 9 beats min,1; P < 0.001), suggesting that GABAergic circuitry in the NTS modulating heart rate was arterial pressure dependent. In contrast, there was no significant difference in the magnitude of gabazine-induced bradycardia in spontaneously hypertensive rats at low or high PP (,HR at low PP, ,45 ± 10 beats min,1; at high PP, ,58 ± 7 beats min,1). With regard to thoracic sympathetic nerve activity (tSNA), at high PP there was a significant reduction in tSNA during the inspiratory (I) phase of the respiratory cycle, but only in the normotensive rat (,,tSNA =,18.7 ± 10%). At low PP, gabazine caused an elevation of the postinspiration phase of tSNA in both normotensive (,,tSNA = 23.7 ± 2.9%) and hypertensive rats (,,tSNA = 44.2 ± 14%). At low PP, gabazine produced no change in tSNA during the mid-expiration phase in either rat strain, but at high PP we observed a significant reduction in the mid-expiration phase tSNA, but only in the spontaneously hypertensive rat (,,tSNA =,25.2 ± 8%). Gabazine at both low and high PP produced a reduction in the late expiration phase of tSNA in the hypertensive rat (low PP, ,,tSNA =,29.4 ± 4.4%; high PP, ,tSNA =,22.8 ± 3%), whereas in the normotensive rat this was only significant at high PP (,,tSNA =,42.5 ± 6.1%). Therefore, in the spontaneously hypertensive rat, contrary to the GABAA receptor-mediated control of HR, it appears that GABAA receptor-mediated control of tSNA in the NTS is arterial pressure dependent. This study provides new insight into the origin of GABAergic inhibition in NTS circuitry affecting heart rate and sympathetic activity. [source] Cross-sample entropy statistic as a measure of complexity and regularity of renal sympathetic nerve activity in the ratEXPERIMENTAL PHYSIOLOGY, Issue 4 2007Tao Zhang In this study, we employed both power spectral analysis and cross-sample entropy measurement to assess the relationship between two time series, arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA), during a mild haemorrhage in anaesthetized Wistar rats. Removal of 1 ml of venous blood decreased BP (by 7.1 ± 0.7 mmHg) and increased RSNA (by 25.9 ± 2.4%). During these changes, the power in the RSNA signal at heart rate frequency was reduced but coherence between the spectra at heart rate frequency in RSNA and ABP remained unchanged. Cross-sample entropy was significantly increased (by 10%) by haemorrhage, revealing that there was greater asynchrony between ABP and the RSNA time series. Intrathecal administration of the glutamate receptor antagonist kynurenic acid (2 mm) almost halved (P < 0.01) the reflex increase in RSNA. Also during kynurenic acid block, haemorrhage failed to change total power, power at heart rate frequency, coherence at heart rate frequency, or the cross-sample entropy measurements. We conclude that the increase in asynchrony between ABP and RSNA during the reflex increase in RSNA was a consequence of an increase in synaptic input to the spinal renal neurones. The data show that the cross-sample entropy calculations can characterize the non-linearities of neural mechanisms underlying cardiovascular control and have a potential to reveal how some aspects of homeostatic regulation of kidney function is achieved by the autonomic nervous system. [source] The role of steroid hormones in the regulation of vasopressin and oxytocin release and mRNA expression in hypothalamo neurohypophysial explants from the ratEXPERIMENTAL PHYSIOLOGY, Issue 2000Celia D. Sladek Vasopressin and oxytocin release from the neural lobe, and the vasopressin and oxytocin mRNA contents of the supraoptic and paraventricular nuclei are increased by hypertonicity of the extracellular fluid. The factors regulating these parameters can be conveniently studied in perifused explants of the hypothalamo-neurohypophysial system that include the supraoptic nucleus (but not the paraventricular nucleus) with its axonal projections to the neural lobe. Vasopressin and oxytocin release and the mRNA content of these explants respond appropriately to increases in the osmolality of the perifusate. This requires synaptic input from the region of the organum vasculosum of the lamina terminalis. Glutamate is a likely candidate for transmitting osmotic information from the organum vasculosum of the lamina terminalis to the magnocellular neurones, because agonists for excitatory amino acid receptors stimulate vasopressin and oxytocin release, and because increased vasopressin release and mRNA content induced in hypothalamo-neurohypophysial explants by a ramp increase in osmolality are blocked by antagonists of both NMDA (N -methyl-D-aspartate) and non-NMDA glutamate receptors. Osmotically stimulated vasopressin release is also blocked by testosterone, dihydrotestosterone, oestradiol and corticosterone. Both oestrogen and dihydrotestosterone block NMDA stimulation of vasopressin release, and in preliminary studies oestradiol blocked AMPA stimulation of vasopressin release. Thus, steroid inhibition of osmotically stimulated vasopressin secretion may reflect inhibition of mechanisms mediated by excitatory amino acids. Recent studies have demonstrated numerous mechanisms by which steroid hormones may impact upon neuronal function. Therefore, additional work is warranted to understand these effects of the steroid hormones on vasopressin and oxytocin secretion and to elucidate the potential contribution of these mechanisms to regulation of hormone release in vivo. [source] Glial cells promote dendrite formation and the reception of synaptic input in Purkinje cells from postnatal miceGLIA, Issue 5 2010Isabelle Buard Abstract Previous studies suggest that glial cells contribute to synaptogenesis in specific neurons from the postnatal CNS. Here, we studied whether this is true for Purkinje cells (PCs), which represent a unique neuronal cell type due to their large size, massive synaptic input, and high vulnerability. Using new glia-free cultures enriched in PCs from postnatal mice we show that these neurons survived and grew, but displayed only low levels of excitatory and inhibitory synaptic activity. Coculture with glial cells strongly enhanced the frequency and size of spontaneous and miniature excitatory synaptic currents as well as neurite growth and branching. Immunocytochemical staining for microtubule-associated protein 2- (MAP2-) positive neurites revealed impaired dendrite formation in PCs under glia-free conditions, which can explain the absence of synaptic activity. Glial signals strongly enhanced dendritogenesis in PCs and thus their ability to receive excitatory synaptic input from granule cells (GCs). The enhancement of dendrite formation was mimicked by glia-conditioned medium (GCM), whereas the increase in synaptic activity required physical presence of glia. This indicated that dendrite development is necessary but not sufficient for PCs to receive excitatory synaptic input and that synaptogenesis requires additional signals. The level of inhibitory synaptic activity was low even in cocultures due to a low incidence of inhibitory interneurons. Taken together, our results reinforce the idea that glial cells promote synaptogenesis in specific neuronal cell types. © 2009 Wiley-Liss, Inc. [source] Increased Galanin Synapses onto Activated Gonadotropin-Releasing Hormone Neuronal Cell Bodies in Normal Female Mice and in Functional Preoptic Area Grafts in Hypogonadal MiceJOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2002G. Rajendren Abstract Galanin synaptic input onto gonadotropin-releasing hormone (GnRH) neuronal cell bodies was analysed in female mice using the presynaptic vesicle-specific protein, synaptophysin (Syn) as a marker. In the first experiment, forebrain sections from normal ovariectomized ovarian steroid-primed mice exhibiting a surge of luteinizing hormone were processed for immunohistochemical labelling for GnRH, synaptophysin, galanin and Fos. Two representative sections from each brain, one passing through the anterior septum (anterior section) and the other through the organum vasculosum lamina terminalis-preoptic area (posterior section), were analysed under the confocal microscope. None of the GnRH cells analysed in the anterior sections were Fos immunoreactive (IR) or received input from galanin-IR fibres. In contrast, the majority of GnRH cells in the posterior sections analysed were Fos-positive. The number of galanin synapses onto the Fos-positive GnRH cells was significantly higher than that in the Fos-negative cells in this area of the brain, even though the number of Syn-IR appositions was comparable to each other. Transplantation of preoptic area (POA) into the third cerebral ventricle of hypogonadal (HPG) mice corrects deficits in the reproductive system. In the second experiment, synaptic input to GnRH cells was compared between HPG/POA mice with (functional graft) or without (nonfunctional graft) gonadal development. The mean numbers of Syn-IR appositions and galanin synapses per GnRH cell and the proportion of GnRH cells with galanin input were significantly higher in the functional than in the nonfunctional grafts. The results suggest that galanin can act directly on the GnRH cell bodies and may have an important regulatory role on the GnRH system. [source] A new role for P2 receptors: talking with calcium-activated potassium channelsNEUROGASTROENTEROLOGY & MOTILITY, Issue 11 2007P. P. Bertrand Abstract Purinergic fast synaptic transmission may play a very subtle role in regulating the excitability of enteric circuits. That is one of the important findings in a new paper by Ren and Galligan in the current issue of this Journal. They first provide compelling evidence that P2X3 receptors (ionotropic purine receptors) are expressed by guinea-pig motor and interneurons and that these subtypes mediate the purinergic fast excitatory postsynaptic potential (EPSP). They also found that the P2X3 -mediated depolarization was often followed by a hyperpolarization. This is an intriguing finding because if the purinergic fast EPSPs are also followed by a hyperpolarization, then it could play a role in truncating bursts of synaptic potentials or in shaping periodic synaptic input. The hyperpolarization is caused by calcium entry through the P2X3 receptor which then activates a calcium-activated potassium (KCa) channel. Surprisingly, the hyperpolarization was not affected by any of the standard blockers of calcium- or voltage-activated K+ channels suggesting that a novel KCa channel is present in the enteric neurons. Such a wide-spread channel could well have an important physiological role and could be an important new drug target for regulating reflex activity in the enteric nervous system. [source] GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridizationTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2004Ruth L. Stornetta Abstract Electron microscopy suggests that up to half the synaptic input to sympathetic preganglionic neurons (SPGNs) is GABAergic or glycinergic. A proportion of this input is suspected to originate from neurons located within the medulla oblongata. The present study provides definitive evidence for the existence of these supraspinal presympathetic (PS) neurons with inhibitory phenotypes. PS neurons were identified by retrograde trans-synaptic migration of pseudorabies virus (PRV) injected into the adrenal gland. GABAergic or glycinergic cell bodies were identified by the presence of glutamate decarboxylase (GAD)-67 mRNA or glycine transporter (GlyT)-2 mRNA detected with in situ hybridization (ISH). Neither GABAergic nor glycinergic PS neurons were tyrosine hydroxylase (TH)-immunoreactive (ir). GABAergic PS neurons were located within the ventral gigantocellular nucleus, gigantocellular nucleus alpha, and medial reticular formation, mostly medial to the TH-ir PS neurons. About 30% of GABAergic PS neurons were serotonergic cells located in the raphe pallidus (RPa) and parapyramidal region (PPyr). Glycinergic PS neurons had the same general distribution as the GABAergic cells, except that no glycinergic neurons were located in the RPa or PPyr and none were serotonergic. PRV immunohistochemistry combined with ISH for both GlyT2 and GAD-67 mRNAs showed that at least 63% of midline medulla GABAergic PS neurons were also glycinergic and 76% of glycinergic PS neurons were GABAergic. In conclusion, the rostral ventromedial medulla contains large numbers of GABAergic and glycinergic neurons that innervate adrenal gland SPGNs. Over half of these PS neurons may release both transmitters. The physiological role of this medullary inhibitory input remains to be explored. J. Comp. Neurol. 479:257,270, 2004. © 2004 Wiley-Liss, Inc. [source] Immunohistochemical localization of Ih channel subunits, HCN1,4, in the rat brainTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2004Takuya Notomi Abstract Hyperpolarization-activated cation currents (Ih) contribute to various physiological properties and functions in the brain, including neuronal pacemaker activity, setting of resting membrane potential, and dendritic integration of synaptic input. Four subunits of the Hyperpolarization-activated and Cyclic-Nucleotide-gated nonselective cation channels (HCN1,4), which generate Ih, have been cloned recently. To better understand the functional diversity of Ih in the brain, we examined precise immunohistochemical localization of four HCNs in the rat brain. Immunoreactivity for HCN1 showed predominantly cortical distribution, being intense in the neocortex, hippocampus, superior colliculus, and cerebellum, whereas those for HCN3 and HCN4 exhibited subcortical distribution mainly concentrated in the hypothalamus and thalamus, respectively. Immunoreactivity for HCN2 had a widespread distribution throughout the brain. Double immunofluorescence revealed colocalization of immunoreactivity for HCN1 and HCN2 in distal dendrites of pyramidal cells in the hippocampus and neocortex. At the electron microscopic level, immunogold particles for HCN1 and HCN2 had similar distribution patterns along plasma membrane of dendritic shafts in layer I of the neocortex and stratum lacunosum moleculare of the hippocampal CA1 area, suggesting that these subunits could form heteromeric channels. Our results further indicate that HCNs are localized not only in somato-dendritic compartments but also in axonal compartments of neurons. Immunoreactivity for HCNs often occurred in preterminal rather than terminal portions of axons and in specific populations of myelinated axons. We also found HCN2-immunopositive oligodendrocytes including perineuronal oligodendrocytes throughout the brain. These results support previous electrophysiological findings and further suggest unexpected roles of Ih channels in the brain. J. Comp. Neurol. 471:241,276, 2004. © 2004 Wiley-Liss, Inc. [source] Synaptic connections of cholinergic antennal lobe relay neurons innervating the lateral horn neuropile in the brain of Drosophila melanogasterTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2003Kouji Yasuyama Abstract Presumed cholinergic projection neurons (PNs) in the brain of the fruit fly Drosophila melanogaster, immunoreactive to choline acetyltransferase (ChAT), convey olfactory information between the primary sensory antennal lobe neuropile and the mushroom body calyces, and finally terminate in the lateral horn (LH) neuropile. The texture and synaptic connections of ChAT PNs in the LH and, comparatively, in the smaller mushroom body calyces were investigated by immuno light and electron microscopy. The ChAT PN fibers of the massive inner antennocerebral tract (iACT) extend into all portions of the LH, distributing in a nonrandom fashion. Immunoreactive boutons accumulate in the lateral margins of the LH, whereas the more proximal LH exhibits less intense immunolabeling. Boutons with divergent presynaptic sites, unlabeled as well as ChAT-immunoreactive, appear to be the preponderant mode of synaptic input throughout the LH. Synapses of ChAT-labeled fibers appear predominantly as divergent synaptic boutons (diameters 1,3 ,m), connected to unlabeled postsynaptic profiles, or alternatively as a minority of tiny postsynaptic spines (diameters 0.05,0.5 ,m) among unlabeled profiles. Together these spines encircle unidentified presynaptic boutons of interneurons which occupy large areas of the LH. Thus, synaptic circuits in the LH differ profoundly from those of the PNs in the mushroom body calyx, where ChAT spines have not been encountered. Synaptic contacts between LH ChAT elements were not observed. The synaptic LH neuropile may serve as an output area for terminals of the ChAT PNs, their presynaptic boutons providing input to noncholinergic relay neurons. The significance of the postsynaptic neurites of the ChAT PNs is discussed; either local or other interneurons might connect the ChAT PNs within the LH, or PNs might receive inputs arising from outside the LH. J. Comp. Neurol. 466:299,315, 2003. © 2003 Wiley-Liss, Inc. [source] Excitatory synaptic inputs on myenteric Dogiel type II neurones of the pig ileumTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2001Wim Cornelissen Abstract The synaptic input on myenteric Dogiel type II neurones (n = 63) obtained from the ileum of 17 pigs was studied by intracellular recording. In 77% of the neurones, electrical stimulation of a fibre tract evoked fast excitatory postsynaptic potentials (fEPSPs) with an amplitude of 6 ± 5 mV (mean ± S.D.) and lasting 49 ± 29 ms. The nicotinic nature of the fEPSPs was demonstrated by superfusing hexamethonium (20 ,M). High-frequency stimulation (up to 20 Hz, 3 seconds) did not result in a rundown of the fEPSPs, and did not evoke slow excitatory or inhibitory postsynaptic potentials. The effects of neurotransmitters, possibly involved in these excitatory responses, were investigated. Pressure microejection of acetylcholine (10 mM in pipette) resulted in a fast nicotinic depolarisation in 67%(18/27) of the neurones (13 ± 9 mV, duration 7.0 ± 7.2 seconds) as did 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) application (10 mM; 14 ± 10 mV, duration 4.1 ± 2.8 seconds) in 76%of the cells. The fast nicotinic response to acetylcholine was sometimes (6/27) followed by a slow muscarinic depolarisation (8 ± 4 mV; duration 38.7 ± 10.8 seconds). Immunostaining revealed 5-hydroxytryptamine hydrochloride (5-HT)- and calcitonin gene-related peptide (CGRP)-positive neuronal baskets distributed around and in close vicinity to Dogiel type II neuronal cell bodies. Microejection of 5-HT (10 mM) resulted in a fast nicotinic-like depolarisation (12 ± 6 mV, duration 3.0 ± 1.3 seconds) in 4 of 8 neurones tested, whereas microejection of CGRP (20 mM) gave rise to a slow muscarinic-like depolarisation (6 ± 2 mV, duration 56.0 ± 27.5 seconds) in 8 of 12 neurones tested. In conclusion, myenteric Dogiel type II neurones in the porcine ileum receive diverse synaptic input. Mainly with regard to the prominent presence of nicotinic responses, these neurones behave contrary to their guinea pig counterparts. J. Comp. Neurol. 432:137,154, 2001. © 2001 Wiley-Liss, Inc. [source] Properties of glycine receptors underlying synaptic currents in presynaptic axon terminals of rod bipolar cells in the rat retinaTHE JOURNAL OF PHYSIOLOGY, Issue 15 2009Svein Harald Mørkve The excitability of presynaptic terminals can be controlled by synaptic input that directly targets the terminals. Retinal rod bipolar axon terminals receive presynaptic input from different types of amacrine cells, some of which are glycinergic. Here, we have performed patch-clamp recordings from rod bipolar axon terminals in rat retinal slices. We used whole-cell recordings to study glycinergic inhibitory postsynaptic currents (IPSCs) under conditions of adequate local voltage clamp and outside-out patch recordings to study biophysical and pharmacological properties of the glycine receptors with ultrafast application. Glycinergic IPSCs, recorded in both intact cells and isolated terminals, were strychnine sensitive and displayed fast kinetics with a double-exponential decay. Ultrafast application of brief (,1 ms) pulses of glycine (3 mm) to patches evoked responses with fast, double-exponential deactivation kinetics, no evidence of desensitization in double-pulse experiments, relatively low apparent affinity (EC50,100 ,m), and high maximum open probability (,0.9). Longer pulses evoked slow, double-exponential desensitization and double-pulse experiments indicated slow, double-exponential recovery from desensitization. Non-stationary noise analysis of IPSCs and patch responses yielded single-channel conductances of ,41 pS and ,64 pS, respectively. Directly observed single-channel gating occurred at ,40,50 pS and ,80,90 pS in both types of responses, suggesting a mixture of heteromeric and homomeric receptors. Synaptic release of glycine leads to transient receptor activation, with about eight receptors available to bind transmitter after release of a single vesicle. With a low intracellular chloride concentration, this leads to either hyperpolarizing or shunting inhibition that will counteract passive and regenerative depolarization and depolarization-evoked transmitter release. [source] Active properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibitionTHE JOURNAL OF PHYSIOLOGY, Issue 5 2008C. J. Heckman The dendrites of spinal motoneurones are highly active, generating a strong persistent inward current (PIC) that has an enormous impact on processing of synaptic input. The PIC is subject to regulation by descending neuromodulatory systems releasing the monoamines serotonin and noradrenaline. At high monoaminergic drive levels, the PIC dominates synaptic integration, generating an intrinsic dendritic current that is as much as 5-fold larger than the current entering via synapses. Without the PIC, motoneurone excitability is very low. Presumably, this descending control of the synaptic integration via the PIC is used to adjust the excitability (gain) of motoneurones for different motor tasks. A problem with this gain control is that monoaminergic input to the cord is very diffuse, affecting many motor pools simultaneously, probably including both agonists and antagonists. The PIC is, however, exquisitely sensitive to the reciprocal inhibition mediated by length sensitive muscle spindle Ia afferents and Ia interneurones. Reciprocal inhibition is tightly focused, shared only between strict mechanical antagonists, and thus can act to ,sculpt' specific movement patterns out of a background of diffuse neuromodulation. Thus it is likely that motoneurone gain is set by the interaction between diffuse descending neuromodulation and specific and focused local synaptic inhibitory circuits. [source] NO signalling decodes frequency of neuronal activity and generates synapse-specific plasticity in mouse cerebellumTHE JOURNAL OF PHYSIOLOGY, Issue 3 2005Shigeyuki Namiki Nitric oxide (NO) is an intercellular messenger regulating neuronal functions. To visualize NO signalling in the brain, we generated a novel fluorescent NO indicator, which consists of the heme-binding region (HBR) of soluble guanylyl cyclase and the green fluorescent protein. The indicator (HBR,GFP) was expressed in the Purkinje cells of the mouse cerebellum and we imaged NO signals in acute cerebellar slices upon parallel fibre (PF) activation with a train of burst stimulations (BS, each BS consisting of five pulses at 50 Hz). Our results showed that the intensity of synaptic NO signal decays steeply with the distance from the synaptic input near PF,Purkinje cell synapses and generates synapse-specific long-term potentiation (LTP). Furthermore, the NO release level has a bell-shaped dependence on the frequency of PF activity. At an optimal frequency (1 Hz), but not at a low frequency (0.25 Hz) of a train of 60 BS, NO release as well as LTP was induced. However, both NO release and LTP were significantly reduced at higher frequencies (2,4 Hz) of BS train due to cannabinoid receptor-mediated retrograde inhibition of NO generation at the PF terminals. These results suggest that synaptic NO signalling decodes the frequency of neuronal activity to mediate synaptic plasticity at the PF,Purkinje cell synapse. [source] A modelling study of locomotion-induced hyperpolarization of voltage threshold in cat lumbar motoneuronesTHE JOURNAL OF PHYSIOLOGY, Issue 2 2002Yue Dai During fictive locomotion the excitability of adult cat lumbar motoneurones is increased by a reduction (a mean hyperpolarization of ,6.0 mV) of voltage threshold (Vth) for action potential (AP) initiation that is accompanied by only small changes in AP height and width. Further examination of the experimental data in the present study confirms that Vth lowering is present to a similar degree in both the hyperpolarized and depolarized portions of the locomotor step cycle. This indicates that Vth reduction is a modulation of motoneurone membrane currents throughout the locomotor state rather than being related to the phasic synaptic input within the locomotor cycle. Potential ionic mechanisms of this locomotor-state-dependent increase in excitability were examined using three five-compartment models of the motoneurone innervating slow, fast fatigue resistant and fast fatigable muscle fibres. Passive and active membrane conductances were set to produce input resistance, rheobase, afterhyperpolarization (AHP) and membrane time constant values similar to those measured in adult cat motoneurones in non-locomoting conditions. The parameters of 10 membrane conductances were then individually altered in an attempt to replicate the hyperpolarization of Vth that occurs in decerebrate cats during fictive locomotion. The goal was to find conductance changes that could produce a greater than 3 mV hyperpolarization of Vth with only small changes in AP height (< 3 mV) and width (< 1.2 ms). Vth reduction without large changes in AP shape could be produced either by increasing fast sodium current or by reducing delayed rectifier potassium current. The most effective Vth reductions were achieved by either increasing the conductance of fast sodium channels or by hyperpolarizing the voltage dependency of their activation. These changes were particularly effective when localized to the initial segment. Reducing the conductance of delayed rectifier channels or depolarizing their activation produced similar but smaller changes in Vth. Changes in current underlying the AHP, the persistent Na+ current, three Ca2+ currents, the ,h' mixed cation current, the ,A' potassium current and the leak current were either ineffective in reducing Vth or also produced gross changes in the AP. It is suggested that the increased excitability of motoneurones during locomotion could be readily accomplished by hyperpolarizing the voltage dependency of fast sodium channels in the axon hillock by a hitherto unknown neuromodulatory action. [source] Mechanisms of metabotropic glutamate receptor-mediated synaptic signalling in cerebellar Purkinje cellsACTA PHYSIOLOGICA, Issue 1 2009J. Hartmann Abstract The metabotropic glutamate receptors type 1 (mGluR1s) are required for a normal function of the mammalian cerebellum. These G-protein-coupled receptors are abundantly expressed in the principle cerebellar cells, namely the Purkinje neurones. Under physiological conditions, mGluR1s are activated during repetitive activity of both afferent glutamatergic synaptic inputs provided by the climbing and parallel fibres respectively. Unlike the common ionotropic glutamate receptors that underlie rapid synaptic excitation, mGluR1s produce a complex post-synaptic response consisting of a Ca2+ -release signal from intracellular stores and a slow excitatory post-synaptic potential. While it is well established that the mGluR1-dependent Ca2+ -release signal from intracellular stores involves the activation of inositol-trisphosphate receptors, the mechanisms underlying the slow synaptic excitation remained unclear. Here we will review recent evidence indicating an essential role of C-type transient receptor potential (TRPC) cation channels, especially that of the subunit TRPC3, for the generation of the mGluR1-dependent synaptic current. For the signalling pathways underlying both, Ca2+ -release from intracellular stores and the slow synaptic potential, we present current knowledge about the activators, downstream effectors and possible roles for mGluR1-dependent signalling in Purkinje neurones. [source] Homer proteins shape Xenopus optic tectal cell dendritic arbor development in vivoDEVELOPMENTAL NEUROBIOLOGY, Issue 11 2008Kendall R. Van Keuren-Jensen Abstract Considerable evidence suggests that the Homer family of scaffolding proteins contributes to synaptic organization and function. We investigated the role of both Homer 1b, the constitutively expressed, and developmentally regulated form of Homer, and Homer 1a, the activity-induced immediate early gene, in dendritic arbor elaboration and synaptic function of developing Xenopus optic tectal neurons. We expressed exogenous Homer 1a or Homer 1b in developing Xenopus tectal neurons. By collecting in vivo time lapse images of individual, EGFP-labeled and Homer-expressing neurons over 3 days, we found that Homer 1b leads to a significant decrease in dendritic arbor growth rate and arbor size. Synaptic transmission was also altered in developing neurons transfected with Homer 1b. Cells expressing exogenous Homer 1b over 3 days had a significantly greater AMPA to NMDA ratios, and increased AMPA mEPSC frequency. These data suggest that increasing Homer 1b expression increases excitatory synaptic inputs, increases synaptic maturation, and slows dendritic arbor growth rate. Exogenous Homer 1a expression increases AMPA mEPSC frequency, but did not significantly affect tectal cell dendritic arbor development. Changes in the ratio of Homer 1a to Homer 1b may signal the neuron that overall activity levels in the cell have changed, and this in turn could affect protein interactions at the synapse, synaptic transmission, and structural development of the dendritic arbor. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] Identification of a cis -acting element required for dendritic targeting of activity-regulated cytoskeleton-associated protein mRNAEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2005Hiroaki Kobayashi Abstract The mRNA encoding activity-regulated cytoskeleton-associated protein (Arc) is known to be targeted to dendritic regions that have received strong synaptic inputs. However, the cis- acting elements in Arc mRNA that mediate dendritic targeting have not been identified. To identify the dendritic targeting element (DTE) in rat Arc mRNA, we expressed reporter mRNAs containing various regions of Arc in primary hippocampal neurones and analysed their subcellular distribution by in situ hybridization. Here, we report that the 3,-untranslated region of rat Arc mRNA contains a 350-nucleotide DTE with strong dendritic targeting activity and another 370-nucleotide sequence with weaker dendritic targeting activity. The 350-nucleotide DTE does not share any obvious sequence similarity with other known DTEs previously reported. [source] Activity-dependent maturation of excitatory synaptic connections in solitary neuron cultures of mouse neocortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2005Naoki Takada Abstract Activity plays important roles in the formation and maturation of synaptic connections. We examined these roles using solitary neocortical excitatory neurons, receiving only self-generated synaptic inputs, cultured in a microisland with and without spontaneous spike activity. The amplitude of excitatory postsynaptic currents (EPSCs), evoked by applying brief depolarizing voltage pulses to the cell soma, continued to increase from 7 to 14 days in culture. Short-term depression of EPSCs in response to paired-pulse or 10-train-pulse stimulation decreased with time in culture. These developmental changes were prevented when neurons were cultured in a solution containing tetrodotoxin (TTX). The number of functional synapses estimated by recycled synaptic vesicles with FM4-64 was significantly smaller in TTX-treated than control neurons. However, the miniature EPSC amplitude remained unchanged during development, irrespective of activity. Transmitter release probability, assessed by use-dependent blockade of N -methyl- d -aspartate receptor-mediated EPSCs with MK-801, was higher in TTX-treated than control neurons. Therefore, the activity-dependent increase in EPSC amplitude was mainly ascribed to the increase in synapse number, while activity-dependent alleviation of short-term depression was mostly ascribed to the decrease in release probability. The effect of activity blockade on short-term depression, but not EPSC amplitude, was reversed after 4 days of TTX removal, indicating that synapse number and release probability are controlled by activity in very different ways. These results demonstrate that activity regulates the conversion of immature synapses transmitting low-frequency input signals preferentially to mature synapses transmitting both low- and high-frequency signals effectively, which may be necessary for information processing in mature cortex. [source] Dynamics of Ca2+ and Na+ in the dendrites of mouse cerebellar Purkinje cells evoked by parallel fibre stimulationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2003Akinori Kuruma Abstract Ca2+ and Na+ play important roles in neurons, such as in synaptic plasticity. Their concentrations in neurons change dynamically in response to synaptic inputs, but their kinetics have not been compared directly. Here, we show the mechanisms and dynamics of Ca2+ and Na+ transients by simultaneous monitoring in Purkinje cell dendrites in mouse cerebellar slices. High frequency parallel fibre stimulation (50 Hz, 3,50-times) depolarized Purkinje cells, and Ca2+ transients were observed at the anatomically expected sites. The magnitude of the Ca2+ transients increased linearly with increasing numbers of parallel fibre inputs. With 50 stimuli, Ca2+ transients lasted for seconds, and the peak [Ca2+] reached ,100 µm, which was much higher than that reported previously, although it was still confined to a part of the dendrite. In contrast, Na+ transients were sustained for tens of seconds and diffused away from the stimulated site. Pharmacological interventions revealed that Na+ influx through ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and Ca2+ influx through P-type Ca channels were essential players, that AMPA receptors did not operate as a Ca2+ influx pathway and that Ca2+ release from intracellular stores through inositol trisphosphate receptors or ryanodine receptors did not contribute greatly to the large Ca2+ transients. [source] |