Symmetry Relationships (symmetry + relationships)

Distribution by Scientific Domains


Selected Abstracts


ChemInform Abstract: Symmetry Relationships Among Derivatives of the ReO3 Type.

CHEMINFORM, Issue 33 2002
Oliver Bock
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Symmetry relations of magnetic twin laws

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 6 2001
J. Schlessman
Symmetry relationships between two simultaneously observed domain states (domain pair) are used to determine physical properties that can distinguish between the observed domains. Here the tabulation of these symmetry relationships is extended from non-magnetic cases to magnetic cases, in terms of magnetic point groups, i.e. all possible magnetic symmetry groups and magnetic twinning groups of domain pairs are determined and tabulated. [source]


Graph-set and packing analysis of hydrogen-bonded networks in polyamide structures in the Cambridge Structural Database

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 5 2000
W. D. Samuel Motherwell
The hydrogen-bond networks and crystal packing of 81 unique secondary di- and polyamides in the Cambridge Structural Database are investigated. Graph-set analysis, as implemented in the RPluto program, is used to classify network motifs. These have been rationalized in terms of the relative dispositions of the amide groups. Peptide and retropeptides exhibit significant conformational flexibility, which permits alternative hydrogen-bonding patterns. In peptides, dihedral angles of ,,,,, 105° allow an antiparallel ladder arrangement, containing rings of either the same or alternating sizes. For retropeptides, and diamides with an odd number of CH2 spacers, this conformation leads to a parallel ladder with rings of equal size. If , approaches ,60° and , 180°, ladders adopt a helical twist, and if the conformation is distorted further, a three-dimensional network is usually adopted. Diamides with aromatic or an even number of CH2 spacers generally form either antiparallel ladders or sheets, although some exhibit both polymorphs. Symmetry relationships within and between hydrogen-bonded chains, ladders and sheets in the crystal packing have also been analysed. Polyamides form considerably more complex networks, although many of the structural motifs present in the diamides occur as components of these networks. [source]


Symmetry relations of magnetic twin laws

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 6 2001
J. Schlessman
Symmetry relationships between two simultaneously observed domain states (domain pair) are used to determine physical properties that can distinguish between the observed domains. Here the tabulation of these symmetry relationships is extended from non-magnetic cases to magnetic cases, in terms of magnetic point groups, i.e. all possible magnetic symmetry groups and magnetic twinning groups of domain pairs are determined and tabulated. [source]