Symmetry M (symmetry + m)

Distribution by Scientific Domains


Selected Abstracts


Magnetic behaviour of synthetic Co2SiO4

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 6 2009
Andrew Sazonov
Synthetic Co2SiO4 crystallizes in the olivine structure (space group ) with two crystallographically non-equivalent Co positions and shows antiferromagnetic ordering below 50,K. We have investigated the temperature variation of the Co2SiO4 magnetic structure by means of non-polarized and polarized neutron diffraction for single crystals. Measurements with non-polarized neutrons were made at 2.5,K (below TN), whereas polarized neutron diffraction experiments were carried out at 70 and 150,K (above TN) in an external magnetic field of 7,T parallel to the b axis. Additional accurate non-polarized powder diffraction studies were performed in a broad temperature range from 5 to 500,K with small temperature increments. Detailed symmetry analysis of the Co2SiO4 magnetic structure shows that it corresponds to the magnetic (Shubnikov) group Pnma, which allows the antiferromagnetic configuration (Gx, Cy, Az) for the 4a site with inversion symmetry (Co1 position) and (0,Cy,0) for the 4c site with mirror symmetry m (Co2 position). The temperature dependence of the Co1 and Co2 magnetic moments obtained from neutron diffraction experiments was fitted in a modified molecular-field model. The polarized neutron study of the magnetization induced by an applied field shows a non-negligible amount of magnetic moment on the oxygen positions, indicating a delocalization of the magnetic moment from Co towards neighbouring O owing to superexchange coupling. The relative strength of the exchange interactions is discussed based on the non-polarized and polarized neutron data. [source]


The new ternary phases of La3(Zn0.874Mg0.126)11 and Ce3(Zn0.863Mg0.137)11

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 3 2010
Volodymyr Pavlyuk
The new ternary intermetallic title compounds, namely trilanthanum undeca(zinc/magnesium), La3(Zn0.874Mg0.126)11, (I), and tricerium undeca(zinc/magnesium), Ce3(Zn0.863Mg0.137)11, (II), are isostructural and crystallize in the orthorhombic La3Al11 structure type. These three phases belong to the same structural family, the representative members of which may be derived from the tetragonal BaAl4 structure type by a combination of internal deformation and multiple substitution. Compared to the structure of La3Al11, in (I), a significant decrease of 11.9% in the unit-cell b axis and an increase in the other two directions, of 3.6% along a and 5.2% along c, are observed. Such an atypical deformation is caused by the closer packing of atoms in the unit cell due to atom shifts that reflect strengthening of metallic-type bonding. This structural change is also manifested in a significant difference in the coordination around the smaller atoms at the 8l Wyckoff position (site symmetry m). The Al atom in La3Al11 is in a tricapped trigonal prismatic environment (coordination number 9), while the Zn atoms in (I) and (II) are situated in a tetragonal antiprism with two added atoms (coordination number 10). [source]


Monoclinic PZN-8%PT [Pb(Zn0.3066Nb0.6133Ti0.08)O3] at 4,K

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 12 2007
Jennifer S. Forrester
The structure of the relaxor ferroelectric Pb(Zn0.3066Nb0.6133Ti0.08)O3 (lead zinc niobium titanium trioxide), known as PZN-8%PT, was determined at 4,K from very high resolution neutron powder diffraction data. The material is known for its extraordinary piezoelectric properties, which are closely linked to the structure. Pseudo-cubic lattice parameters have led to considerable controversy over the symmetry of the structure. We find the structure to be monoclinic in the space group Cm (No. 8), with the Zn, Nb and Ti cations sharing the octahedrally coordinated B site (site symmetry m, special position 2a) and Pb occupying the 12-coordinate A site (site symmetry m, special position 2a). O atoms occupy a disorted octahedron around the B site (site symmetry m and special position 2a, and site symmetry 1 and general position 4b). Atomic coordinates have been determined for the first time, allowing the direction of spontaneous polarization to be visualized. [source]


A new layered perovskite, KSrNb2O6F, by powder neutron diffraction

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 8 2007
Chung-Yul Yoo
The structure of a new layered oxyfluoride, viz. potassium strontium diniobium hexaoxide fluoride, KSrNb2O6F, was refined from powder neutron diffraction data in the orthorhombic space group Immm. The oxyfluoride compound is an n = 2 member of the Dion,Jacobson-type family of general formula A[A,n,1BnX3n+1], which consists of double layered perovskite slabs, [SrNb2O6F],, between which K+ ions are located. Within the perovskite slabs, the NbO5F octahedra are significantly distorted and tilted about the a axis. A bond-valence-sum calculation gives evidence for O/F ordering in KSrNb2O6F, with the F, ions located in the central sites of the corner-sharing NbO5F octahedra along the b axis. All atoms lie on special positions, namely Nb on m, Sr on mmm, K on m2m, F on mm2, and O on sites of symmetry m and m2m. [source]