Banana Fibers (banana + fiber)

Distribution by Scientific Domains


Selected Abstracts


Biological Natural Retting for Determining the Hierarchical Structuration of Banana Fibers

MACROMOLECULAR BIOSCIENCE, Issue 10 2004
Piedad Gañán
Abstract Summary: Extraction processes of natural fibers can be performed by different procedures that include mechanical, chemical and biological methods. Each method presents different advantages or drawbacks according to the amount of fiber produced or the quality and properties of fiber bundles obtained. In this study, biological natural retting was satisfactorily used for obtaining banana fibers from plant bunches. However, the most important contribution of this work refers to the description of the hierarchical microstructural ordering present in banana fiber bundles in both bundle surface and inner region. The chemical composition of banana fiber bundles has been evaluated by FTIR spectroscopy. Through exposure time, the fiber bundle configuration presents small variations in composition. The main changes are related to hemicellulose and pectins as they conform the outer walls of the bundle. Hierarchical helicoidal ordering in the bundle surface as well as orientation on the longitudinal axis of the bundle were observed by optical microscopy (OM) and scanning electron microscopy (SEM) for 3,4 ,m surface fibers and 10,15 ,m inner elementary fibers, respectively. With increasing exposure time, fiber bundle walls lose integrity, as reflected in their mechanical behavior. [source]


Effect of chemical modifications on the thermal stability and degradation of banana fiber and banana fiber-reinforced phenol formaldehyde composites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008
Seena Joseph
Abstract Banana fiber has been modified by treatments with sodium hydroxide, silanes, cyanoethylation, heat treatment, and latex treatment and the thermal degradation behavior of the fiber was analyzed by thermogravimetry and derivative thermogravimetry analysis. Both treated and untreated fibers showed two-stage decomposition. All the treatments were found to increase the thermal stability of the fiber due to the physical and chemical changes induced by the treatments. The thermal degradation of treated and untreated banana fiber-reinforced phenol formaldehyde composites has also been analyzed. It was found that the thermal stability of the composites was much higher than that of fibers but they are less stable compared to neat PF resin matrix. Composite samples were found to have four-stage degradation. The NaOH treated fiber-reinforced composites have very good fiber/matrix adhesion and hence improvement in thermal stability is observed. Though both silane treatments increased the thermal stability of the composite the vinyl silane is found to be more effective. Heat treatment improves the crystallinity of the fiber and decreases the moisture content, hence an improved thermal stability. The latex treatment and cyanoethylation make the fiber surface hydrophobic, here also the composite is thermally more stable than untreated one. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source]


Biological Natural Retting for Determining the Hierarchical Structuration of Banana Fibers

MACROMOLECULAR BIOSCIENCE, Issue 10 2004
Piedad Gañán
Abstract Summary: Extraction processes of natural fibers can be performed by different procedures that include mechanical, chemical and biological methods. Each method presents different advantages or drawbacks according to the amount of fiber produced or the quality and properties of fiber bundles obtained. In this study, biological natural retting was satisfactorily used for obtaining banana fibers from plant bunches. However, the most important contribution of this work refers to the description of the hierarchical microstructural ordering present in banana fiber bundles in both bundle surface and inner region. The chemical composition of banana fiber bundles has been evaluated by FTIR spectroscopy. Through exposure time, the fiber bundle configuration presents small variations in composition. The main changes are related to hemicellulose and pectins as they conform the outer walls of the bundle. Hierarchical helicoidal ordering in the bundle surface as well as orientation on the longitudinal axis of the bundle were observed by optical microscopy (OM) and scanning electron microscopy (SEM) for 3,4 ,m surface fibers and 10,15 ,m inner elementary fibers, respectively. With increasing exposure time, fiber bundle walls lose integrity, as reflected in their mechanical behavior. [source]