Surface Proteins (surface + protein)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Surface Proteins

  • bacterial surface protein
  • cell surface protein
  • merozoite surface protein
  • outer surface protein


  • Selected Abstracts


    The chemokine receptor CCX-CKR mediates effective scavenging of CCL19 in vitro

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2006
    Iain Comerford
    Abstract The chemokines CCL19, CCL21 and CCL25, by signalling through the receptors CCR7 or CCR9, play critical roles in leukocyte homing. They also bind another heptahelical surface protein, CCX-CKR. CCX-CKR cannot couple to typical chemokine receptor signalling pathways or mediate chemotaxis, and its function remains unclear. We have proposed that it controls chemokine bioavailability. Here, using transfected HEK293 cells, we have shown that both CCX-CKR and CCR7 mediate rapid CCL19 internalisation upon initial chemokine exposure. However, internalised CCL19 was more efficiently retained and degraded after uptake via CCX-CKR. More importantly, CCR7 rapidly became refractory for CCL19 uptake, but the sequestration activity of CCX-CKR was enhanced. These properties endowed CCX-CKR with an impressive ability to mediate progressive sequestration and degradation of large quantities of CCL19, and conversely, prevented CCR7-expressing cells from extensively altering their chemokine environment. These differences may be linked to the routes of endocytosis used by these receptors. CCX-CKR, unlike CCR7, was not critically dependent on ,-arrestins or clathrin-coated pits. However, over-expression of caveolin-1, which stabilises caveolae, blocked CCL19 uptake by CCX-CKR while having no impact on other chemokine receptors, including CCR7. These data predict that CCX-CKR scavenges extracellular chemokines in vivo to modify responses through CCR7. See accompanying commentary: http://dx.doi.org/10.1002/eji.200636327 [source]


    Disulfide bonds in merozoite surface protein 1 of the malaria parasite impede efficient antigen processing and affect the in vivo antibody response

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2004
    M. Hensmann
    Vol. 34(3) 2004, DOI 10.1002/eji.200324514 Due to a technical error, the wrong affiliations were given for C. Moss and V. Lindo. These are correct as given above. See original article http://dx.doi.org/10.1002/eji.200324514 [source]


    A phenotypically distinct subset of immature B cells exhibits partial activation, increased survival, and preferential expression of VhS107

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 12 2003
    Emily
    Abstract We have observed that immature B cells (IgMlowIgD,) in the bone marrow of adult BALB/c mice exhibit heterogeneity, with a distinct subpopulation (,4,10%) expressing the CD43/S7 surface protein. These CD43/S7+ immature B cells often express other surface antigens associated with B cell activation (CD5, CD11b, PD-1). Generation of optimal numbers of CD43/S7+ immature B cells requires expression of a functional Btk protein, consistent with activation as a requisite for the CD43/S7+ immature B cell phenotype. Like typical CD43/S7, immature B cells, the CD43/S7+ immature B cells are predominantly resting cells, which are derived from cycling bone marrow B cell precursors. The CD43/S7+ immature B cell population exhibits enhanced survival in vivo upon administration of the apoptosis-inducing corticosteroid, dexamethasone. Finally, CD43/S7+ immature B cells show a fourfold increase in incidence of VhS107 , heavy chain expression compared to the CD43/S7, immature B cells. Therefore, in adult murine bone marrow, the presence of a phenotypically distinct immature B cellpopulation can be demonstrated which has undergone partial activation leading to increased survival and BCR-dependent Vh repertoire selection. [source]


    Pathogenesis of Lyme neuroborreliosis: Borrelia burgdorferi lipoproteins induce both proliferation and apoptosis in rhesus monkey astrocytes

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2003
    Geeta Ramesh
    Abstract Brain invasion by Borrelia burgdorferi, the agent of Lyme disease, results in an inflammatory and neurodegenerative disorder called neuroborreliosis. In humans, neuroborreliosis has been correlated with enhanced concentration of glial fibrillary acidic protein in the cerebrospinal fluid, a sign of astrogliosis. Rhesus monkeys infected by us with B.,burgdorferi showed evidence of astrogliosis, namely astrocyte proliferation and apoptosis. We formulated the hypothesis that astrogliosis could be caused by spirochetal lipoproteins. We established primary cultures of rhesus monkey astrocytes and stimulated the cells with recombinant lipidated outer surface protein,A (L-OspA), a model B.,burgdorferi lipoprotein, and tripalmitoyl-S-glyceryl-Cys-Ser-Lys4 -OH (Pam3Cys), a synthetic lipopeptide that mimics the structure of the lipoprotein lipid moiety. L-OspA elicited not only astrocyte proliferation but also apoptosis, two features observed during astrogliosis. Astrocytes produced both IL-6 and TNF-, in response to L-OspA and Pam3Cys. Proliferation induced by L-OspA was diminished in the presence of an excess of anti-IL-6 antibody, and apoptosis induced by this lipoprotein was completely suppressed with anti-TNF-, antibody. Hence, IL-6 contributes to, and TNF-, determines, astrocyte proliferation and apoptosis, respectively, as elicited by lipoproteins. Our results provide proof of the principle that spirochetal lipoproteins could be key virulence factors in Lyme neuroborreliosis, and that astrogliosis might contribute to neuroborreliosis pathogenesis. [source]


    Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis

    FEBS JOURNAL, Issue 21 2007
    Anna Hennig
    Bacterial lipoproteins play crucial roles in host,pathogen interactions and pathogenesis and are important targets for the immune system. A prominent example is the outer surface protein A (OspA) of Borrelia burgdorferi, which has been efficiently used as a vaccine for the prevention of Lyme disease. In a previous study, OspA could be produced in tobacco chloroplasts in a lipidated and immunogenic form. To further explore the potential of chloroplasts for the production of bacterial lipoproteins, the role of the N-terminal leader sequence was investigated. The amount of recombinant OspA could be increased up to ten-fold by the variation of the insertion site in the chloroplast genome. Analysis of OspA mutants revealed that replacement of the invariant cysteine residue as well as deletion of the leader sequence abolishes palmitolyation of OspA. Also, decoration of OspA with an N-terminal eukaryotic lipidation motif does not lead to palmitoylation in chloroplasts. Strikingly, the bacterial signal peptide of OspA efficiently targets the protein to thylakoids, and causes a mutant phenotype. Plants accumulating OspA at 10% total soluble protein could not grow without exogenously supplied sugars and rapidly died after transfer to soil under greenhouse conditions. The plants were found to be strongly affected in photosystem II, as revealed by the analyses of temporal and spatial dynamics of photosynthetic activity by chlorophyll fluorescence imaging. Thus, overexpression of OspA in chloroplasts is limited by its concentration-dependent interference with essential functions of chloroplastic membranes required for primary metabolism. [source]


    Induction of neutralizing antibodies in mice immunized with an amino-terminal polypeptide of Streptococcus mutans P1 protein produced by a recombinant Bacillus subtilis strain

    FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 2 2010
    Milene B. Tavares
    Abstract The oral pathogen Streptococcus mutans expresses a surface protein, P1, which interacts with the salivary pellicle on the tooth surface or with fluid-phase saliva, resulting in bacterial adhesion or aggregation, respectively. P1 is a target of protective immunity. Its N-terminal region has been associated with adhesion and aggregation functions and contains epitopes recognized by efficacious antibodies. In this study, we used Bacillus subtilis, a gram-positive expression host, to produce a recombinant N-terminal polypeptide of P1 (P139,512) derived from the S. mutans strain UA159. Purified P139,512 reacted with an anti-full-length P1 antiserum as well as one raised against intact S. mutans cells, indicating preserved antigenicity. Immunization of mice with soluble and heat-denatured P139,512 induced antibodies that reacted specifically with native P1 on the surface of S. mutans cells. The anti-P139,512 antiserum was as effective at blocking saliva-mediated aggregation of S. mutans cells and better at blocking bacterial adhesion to saliva-coated plastic surfaces compared with the anti-full-length P1 antiserum. In addition, adsorption of the anti-P1 antiserum with P139,512 eliminated its ability to block the adhesion of S. mutans cells to abiotic surfaces. The present results indicate that P139,512, expressed and purified from a recombinant B. subtilis strain, maintains important immunological features of the native protein and represents an additional tool for the development of anticaries vaccines. [source]


    The surface-associated elongation factor Tu is concealed for antibody binding on viable pneumococci and meningococci

    FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 2 2008
    Jan Kolberg
    Abstract Proteome analyses revealed that elongation factor-Tu (EF-Tu) is associated with cytoplasmic membranes of Gram-positive bacteria and outer membranes of Gram-negative bacteria. It is still debatable whether EF-Tu is located on the external side or the internal side of the membranes. Here, we have generated two new monoclonal antibodies (mAbs) and polyclonal rabbit antibodies against pneumococcal EF-Tu. These antibodies were used to investigate the amount of surface-exposed EF-Tu on viable bacteria using a flow cytometric analysis. The control antibodies recognizing the pneumococcal surface protein A and phosphorylcholine showed a significant binding to viable pneumococci. In contrast, anti-EF-Tu antibodies did not recognize pneumococcal EF-Tu. However, heat killing of pneumococci lacking capsular polysaccharides resulted in specific antibody binding to EF-Tu and, moreover, increased the exposure of recognized phosphorylcholine epitopes. Similarly, our EF-Tu-specific antibodies did not recognize EF-Tu of viable Neisseria meningitidis. However, pretreatment of meningococci with ethanol resulted in specific antibody binding to EF-Tu on outer membranes. Importantly, these treatments did not destroy the membrane integrity as analysed with control mAbs directed against cytoplasmic proteins. In conclusion, our flow cytrometric assays emphasize the importance of using viable bacteria and not heat-killed or ethanol-treated bacteria for surface-localization experiments of proteins, because these treatments modulate the cytoplasmic and outer membranes of bacteria and the binding results may not reflect the situation under physiological conditions. [source]


    A putative lipoprotein of Sphingomonas sp. strain A1 binds alginate rather than a lipid moiety

    FEMS MICROBIOLOGY LETTERS, Issue 2 2008
    Jinshan He
    Abstract Gram-negative Sphingomonas sp. strain A1 accumulates alginate in the cell surface pit and directly incorporates the polysaccharide into its cytoplasm through a ,superchannel'. A cell surface protein Algp7 (27 kDa) is inducibly expressed in the presence of alginate. Although the protein Algp7 was initially classified as a lipoprotein based on its primary structure, Algp7 purified from strain A1 cells did not possess a lipid moiety. Algp7 bound alginate efficiently at a neutral pH with a Kd of 3.6 × 10,8 M, suggesting that the cell surface protein contributed to accumulation of alginate in the pit. [source]


    Conserved regions from Plasmodium falciparum MSP11 specifically interact with host cells and have a potential role during merozoite invasion of red blood cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2010
    Ana Zuleima Obando-Martinez
    Abstract Despite significant global efforts, a completely effective vaccine against Plasmodium falciparum, the species responsible for the most serious form of malaria, has not been yet obtained. One of the most promising approaches consists in combining chemically synthesized minimal subunits of parasite proteins involved in host cell invasion, which has led to the identification of peptides with high binding activity (named HABPs) to hepatocyte and red blood cell (RBC) surface receptors in a large number of sporozoite and merozoite proteins, respectively. Among these proteins is the merozoite surface protein 11 (MSP11), which shares important structural and immunological features with the antimalarial vaccine candidates MSP1, MSP3, and MSP6. In this study, 20-mer-long synthetic peptides spanning the complete sequence of MSP11 were assessed for their ability to bind specifically to RBCs. Two HABPs with high ability to inhibit invasion of RBCs in vitro were identified (namely HABPs 33595 and 33606). HABP-RBC bindings were characterized by means of saturation assays and Hill analysis, finding cooperative interactions of high affinity for both HABPs (nH of 1.5 and 1.2, Kd of 800 and 600,nM for HABPs 33595 and 33606, respectively). The nature of the possible RBC receptors for MSP11 HABPs was studied in binding assays to enzyme-treated RBCs and cross-linking assays, finding that both HABPs use mainly a sialic acid-dependent receptor. An analysis of the immunological, structural and polymorphic characteristics of MSP11 HABPs supports including these peptides in further studies with the aim of designing a fully effective protection-inducing vaccine against malaria. J. Cell. Biochem. 110: 882,892, 2010. © 2010 Wiley-Liss, Inc. [source]


    Occult hepatitis B virus infection and lamivudine-resistant mutations in isolates from renal patients undergoing hemodialysis

    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 1 2010
    Jorge S. Motta
    Abstract Background and Aims:, Patients undergoing hemodialysis are at risk of infection with both hepatitis B virus (HBV) and hepatitis C virus (HCV). Occult HBV infection is usually associated with low levels of HBV and is frequently detected in HCV-infected patients. The aims of the present study were to compare the prevalence of occult HBV infection among anti-HCV-positive and anti-HCV-negative patients undergoing hemodialysis, and characterize the molecular patterns of HBV isolates from patients with occult infection. Methods:, Serum samples from 100 patients negative for hepatitis B surface antigen undergoing hemodialysis, half of whom were positive for anti-HCV antibodies, were tested for the presence of HBV-DNA using semi-nested polymerase chain reaction (PCR). PCR products of the S gene were directly sequenced. Results:, HBV-DNA was detected in 15 samples. There were no significant differences in HCV status, sex, age, time of dialysis, alanine aminotransferase levels or HBV serological markers between patients with or without occult HBV infection, with the exception of antibody to hepatitis B core antigen (anti-HBc)-only serological marker (P = 0.003). All six HBV isolates that could be sequenced were of genotype A/subgenotype A1. Four of these six HBV isolates contained mutations associated with lamivudine resistance in the DNA polymerase (two with L180M/M204V and two with rt173V/180M/204V) and a specific substitution (Y100C) in the HBV small surface protein. Conclusions:, HBV isolates with the identified substitutions have the potential to spread silently by nosocomial transmission within the hemodialysis unit. These results have potential implications for the management of patients with occult HBV infection undergoing hemodialysis. [source]


    Role of surface promoter mutations in hepatitis B surface antigen production and secretion in occult hepatitis B virus infection,

    JOURNAL OF MEDICAL VIROLOGY, Issue 3 2007
    Sonali Sengupta
    Abstract The production, secretion, and localization of surface proteins of hepatitis B virus (HBV) and the ratio of large to small surface protein S was studied in HepG2 cells transfected with the wild-type and mutant pre-S1 and pre-S2/S promoters of HBV molecular clones 313.1 (GenBank accession no. AY161147) and 761.1 (GenBank accession no. AY161159) from two patients with occult HBV infection. Fusion constructs were made by in frame fusion of the wild-type surface gene to the mutant pre-S1 and pre-S2/S promoters and wild-type promoter so that the structural part of the small surface protein remains identical. HepG2 cells transfected transiently were used for analysis. HBV surface proteins production and secretion was determined by enzyme linked immuno assay (ELISA) and localization by immunofluorescence. Immunoprecipitation of the large, middle, and small surface protein was carried out in transient transfected and metabolically labeled cells to determine the ratio of the large to small surface protein. The results indicate that HepG2 cells transfected with mutant HBV promoters had reduced HBV surface proteins secretion compared to wild-type HBV. HepG2 cells transfected with mutant HBV pre-S1 and pre-S2/S promoters showed cytoplasmic aggregation of HBV surface proteins compared to wild-type HBV promoters, which showed diffuse cytoplasmic localization. In all cases, the HBV surface proteins localized to the endoplasmic reticulum. The ratio between the large and small surface protein was 1.89 and 0.56 with mutant HBV 313.1 and 761.1 pre-S1 and pre-S2/S promoters, respectively, compared to 0.17 in wild-type. Thus, the aggregation of surface proteins, altered ratio and secretion of surface proteins were possibly the causes of occult hepatitis B infection. J. Med. Virol. 79:220,228, 2007. © 2007 Wiley-Liss, Inc. [source]


    Involvement of ,1,1 integrin in insulin-like growth factor-1-mediated protection of PC12 neuronal processes from tumor necrosis factor-,-induced injury

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2006
    Jin Ying Wang
    Abstract Insulin-like growth factor 1 receptor (IGF-1R) supports neuronal survival against a wide variety of insults. This includes tumor necrosis factor-, (TNF,)-mediated neuronal damage, which represents one of the factors suspected to play a role in HIV-associated dementia (HAD). PC12 neurons engineered to express human IGF-1R (PC12/IGF-1R) maintain neuronal processes on collagen IV for several weeks. However, prolonged treatment with TNF, caused degeneration of neuronal processes, with no apparent signs of apoptosis. In this process, TNF, did not affect IGF-1-mediated phosphorylation of IRS-1, IRS-2, Akt, or Erks. In addition, PC12/IGF-1R cells were found to express predominantly ,1,1 integrin, which has high affinity to collagen IV. The treatment of PC12/IGF-1R neurons with a specific ,1,1 integrin inhibitor, obtustatin, also caused loss of neuronal processes, accompanied by a quick cell detachment and extensive apoptosis. In the presence of IGF-1, both TNF,-induced and obtustatin-induced degeneration of neuronal processes were effectively inhibited. Furthermore, TNF,-mediated neuronal degeneration correlated with decreased attachment of PC12/IGF-1R cells to collagen IV and with a reduced level of ,1,1 integrin, consistent with a role for this surface protein in the maintenance of neuronal processes. Thus the neuroprotective effects of IGF-1 are not restricted to its antiapoptotic properties but also involve an additional neuroprotective mechanism, by which IGF-1 counteracts the negative effect of TNF, on ,1,1 integrin-mediated attachment to collagen IV. © 2005 Wiley-Liss, Inc. [source]


    Characterization of hepatitis B surface antigen strains circulating in the Kingdom of Cambodia

    JOURNAL OF VIRAL HEPATITIS, Issue 1 2006
    C. T. Srey
    Summary., A collection of hepatitis B surface antigen (HBsAg)-reactive serum specimens from the Pasteur Institute of Cambodia was investigated for the genotype, predicted serotype and the presence of diagnostically significant mutations in the surface protein. From a set of 794 samples, 15 were identified serologically to harbour possible HBsAg mutants and were investigated further. An additional 20 samples were included into the study for PCR and sequence analysis. Of the 22 samples which were HBV-DNA-positive, 16 were of genotype C with the remaining six being genotype B. Point mutations resulting in amino acid substitutions were noted in 10 samples. The majority of these mutations occurred outside the a determinant. [source]


    Super-infections of Wolbachia in byturid beetles and evidence for genetic transfer between A and B super-groups of Wolbachia

    MOLECULAR ECOLOGY, Issue 2 2005
    G. MALLOCH
    Abstract Wolbachia are maternally inherited bacteria responsible for altering host reproduction. The two main groups found in insects, A and B, are based on molecular characterization using ribosomal, ftsZ, wsp (Wolbachia surface protein) or groE genes. We have used the wsp and ftsZ genes to study Wolbachia in byturid beetles. Byturus affinis contained a single copy of the ftsZ gene which grouped with A ftsZ sequences and a single copy of the wsp gene which grouped with B wsp sequences. This suggests that genetic exchange between A and B groups has occurred in the Wolbachia of this beetle. FtsZ and wsp sequences that were identical or nearly identical to those of B. affinis were found in B. tomentosus, suggesting that it also contains the same recombinant Wolbachia genotype. Most other byturids had more than one wsp sequence with at least one from the A and B groups, suggesting multiple copies of bacterial genes or multiple infections. B. ochraceus and B. unicolor both had four distinct wsp gene sequences. All the byturids had a closely related A wsp sequence and most a closely related B wsp sequence. Therefore, there appears to be an association between specific A and B wsp types. [source]


    An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid

    MOLECULAR MICROBIOLOGY, Issue 4 2004
    Christopher M. Waters
    Summary Aggregation substance (AS), a plasmid-encoded surface protein of Enterococcus faecalis, plays important roles in virulence and antibiotic resistance transfer. Previous studies have suggested that AS-mediated aggregation of enterococcal cells could involve the binding of this protein to cell wall lipoteichoic acid (LTA). Here, a method to purify an undegraded form of Asc10, the AS of the plasmid pCF10, is described. Using this purified protein, direct binding of Asc10 to purified E. faecalis LTA was demonstrated. Equivalent binding of Asc10 to LTA purified from INY3000, an E. faecalis strain that is incapable of aggregation, was also observed. Surprisingly, mutations in a previously identified aggregation domain from amino acids 473 to 683 that abolished aggregation had no effect on LTA binding. In frame deletion analysis of Asc10 was used to identify a second aggregation domain located in the N-terminus of the protein from amino acids 156 to 358. A purified Asc10 mutant protein lacking this domain showed reduced LTA binding, while a purified N-terminal fragment from amino acids 44,331 had high LTA binding. Like the previously described aggregation domain, the newly identified Asc10(156,358) aggregation domain was also required for efficient internalization of E. faecalis into HT-29 enterocytes. Thus, Asc10 possess two distinct domains required for aggregation and eukaryotic cell internalization: an N-terminal domain that promotes binding to LTA and a second domain located near the middle of the protein. [source]


    Mss11p is a transcription factor regulating pseudohyphal differentiation, invasive growth and starch metabolism in Saccharomyces cerevisiae in response to nutrient availability

    MOLECULAR MICROBIOLOGY, Issue 1 2003
    Marco Gagiano
    Summary In Saccharomyces cerevisiae, the cell surface protein, Muc1p, was shown to be critical for invasive growth and pseudohyphal differentiation. The transcription of MUC1 and of the co-regulated STA2 glucoamylase gene is controlled by the interplay of a multitude of regulators, including Ste12p, Tec1p, Flo8p, Msn1p and Mss11p. Genetic analysis suggests that Mss11p plays an essential role in this regulatory process and that it functions at the convergence of at least two signalling cascades, the filamentous growth MAPK cascade and the cAMP-PKA pathway. Despite this central role in the control of filamentous growth and starch metabolism, the exact molecular function of Mss11p is unknown. We subjected Mss11p to a detailed molecular analysis and report here on its role in transcriptional regulation, as well as on the identification of specific domains required to confer transcriptional activation in response to nutritional signals. We show that Mss11p contains two independent transactivation domains, one of which is a highly conserved sequence that is found in several proteins with unidentified function in mammalian and invertebrate organisms. We also identify conserved amino acids that are required for the activation function. [source]


    Wolbachia surface protein (WSP) inhibits apoptosis in human neutrophils

    PARASITE IMMUNOLOGY, Issue 2 2007
    C. BAZZOCCHI
    SUMMARY Polymorphonuclear cells (PMNs) are essential for the innate immune response against invading bacteria. At the same time, modulation of PMNs' apoptosis or cell death by bacteria has emerged as a mechanism of pathogenesis. Wolbachia bacteria are Gram-negative endosymbionts of filarial nematodes and arthropods, phylogenetically related to the genera Anaplasma, Ehrlichia and Neorickettsia (family Anaplasmataceae). Although several pathogens are known to interfere with apoptosis, there is only limited information on specific proteins that modulate this phenomenon. This is the first evidence for the anti-apoptotic activity of a surface protein of Wolbachia from filarial nematode parasites (the Wolbachia surface protein, WSP). The inhibition of apoptosis was demonstrated on purified human PMNs in vitro by different methods. TUNEL assay showed that the percentage of dead cells was reduced after stimulation with WSP; Annexin V-FITC binding assay confirmed that cell death was due mainly to apoptosis and not to necrosis. Reduced caspase-3 activity in stimulated cells also confirmed an inhibition of the apoptotic process. [source]


    Antigenic cross-reactivity between different alleles of the Plasmodium falciparum merozoite surface protein 2

    PARASITE IMMUNOLOGY, Issue 11-12 2003
    Ingrid Felger
    SUMMARY The polymorphic domain of the gene encoding Plasmodium falciparum merozoite surface protein 2 (MSP2) was PCR amplified from blood of malaria patients, genotyped, and 19 distinct fragments were cloned and expressed in E. coli. The reactivity of naturally occurring antibodies against this panel of recombinant MSP2 antigens was tested using 67 homologous or heterologous sera from a serum bank of travel clinic patients. Sera from semi-immune individuals strongly recognized almost all recombinant antigens. Sera from primary infected patients either did not react at all (9 sera), or reacted weakly against varying numbers of antigens (39 sera). The antigens that showed reactions were mostly of the allelic family corresponding to the infecting clone, but in very few cases also of the alternative allelic family. Single clone infections and repeated samples from the same individual were analysed in greater detail. Thus, we were able to quantify cross-reactivity induced by a single P. falciparum infection. Within the two allelic families of MSP2, cross-reactivity was observed between some but not all alleles of the same family, whereas antibodies cross-reactive between variants belonging to different allelic families were detected in only a few cases. [source]


    Serum IgG3 to the Plasmodium falciparum merozoite surface protein 2 is strongly associated with a reduced prospective risk of malaria

    PARASITE IMMUNOLOGY, Issue 6 2003
    Wolfram G. Metzger
    SUMMARY The merozoite surface protein 2 (MSP2) of Plasmodium falciparum is recognized by human antibodies elicited during natural infections, and may be a target of protective immunity. In this prospective study, serum IgG antibodies to MSP2 were determined in a cohort of 329 Gambian children immediately before the annual malaria transmission season, and the incidence of clinical malaria in the following 5 months was monitored. Three recombinant MSP2 antigens were used, representing each of the two major allelic serogroups and a conserved region. The prevalence of serum IgG to each antigen correlated positively with age and with the presence of parasitaemia at the time of sampling. These antibodies were associated with a reduced subsequent incidence of clinical malaria during the follow-up. This trend was seen for both IgG1 and IgG3, although the statistical significance was greater for IgG3, the most common subclass against MSP2. After adjusting for potentially confounding effects of age and pre-season parasitaemia, IgG3 reactivities against each of the major serogroups of MSP2 remained significantly associated with a lower prospective risk of clinical malaria. Individuals who had IgG3 reactivity to both of the MSP2 serogroup antigens had an even more significantly reduced risk. Importantly, this effect remained significant after adjusting for a simultaneous strong protective association of antibodies to another antigen (MSP1 block 2) which itself remained highly significant. [source]


    Polyspecific malaria antibodies present at the time of infection inhibit the development of immunity to malaria but antibodies specific for the malaria merozoite surface protein, MSP1, facilitate immunity

    PARASITE IMMUNOLOGY, Issue 5 2002
    Wenbao Zhang
    Summary Serum taken from mice immune to malaria as a result of infection and drug cure, or from mice immunized with a recombinant form of the merozoite surface protein, MSP1, can provide passive protection of recipient mice against the lethal parasite, Plasmodium yoelii YM. However, recipients of MSP1-immune serum go on to develop long-term immunity, whereas recipients of serum from mice naturally immune to malaria rapidly lose their resistance to infection. We demonstrate that ,infection/cure' serum suppresses the development of both antibody and cell-mediated parasite-specific responses in recipients, whereas these develop in recipients of MSP1-specific antibodies. These data have profound implications for our understanding of the development of malaria immunity in babies who passively acquire antibodies from their mothers. [source]


    CD109, a new marker for myoepithelial cells of mammary, salivary, and lacrimal glands and prostate basal cells

    PATHOLOGY INTERNATIONAL, Issue 5 2007
    Masaki Hasegawa
    The CD109 gene encodes a glycosylphosphatidylinositol (GPI)-anchored cell surface protein. Herein it is shown that CD109 is highly expressed in myoepithelial cells of mammary, salivary, and lacrimal glands; and in prostate basal cells. The anti-CD109 antibody generated by the authors was available for formalin-fixed paraffin section, and it strongly stained myoepithelial cells and basal cells but not ductal, acinar, and secretory cells in these glands. CD109 expression was negative in examined breast ductal carcinomas and prostate adenocarcinomas. These findings indicate that CD109 is a useful marker for the diagnosis of invasive breast and prostate carcinomas. [source]


    CD109 expression in squamous cell carcinoma of the uterine cervix

    PATHOLOGY INTERNATIONAL, Issue 4 2005
    Jing-min Zhang
    CD109 is a cell surface protein, a member of the ,2 macroglobulin/C3,C4,C5 family of thioester-containing proteins. The authors have recently reported that high expression of the CD109 gene was detected in approximately half of the examined lung and esophageal squamous cell carcinomas as well as in the testis, and that CD109 has the characteristics of a cancer,testis antigen. In the present study CD109 expression in cervical squamous cell carcinoma was compared with that in endometrial adenocarcinoma by reverse transcription polymerase chain reaction (RT-PCR). The result demonstrated that CD109 expression is significantly higher in cervical squamous cell carcinomas than in endometrial adenocarcinomas and normal cervix and endometrium. In contrast, when expression of RET finger protein (RFP) and bromodomain testis-specific (BRDT) genes, which are also known to be highly expressed in the testis, was examined, no significant difference in their expression levels was observed between squamous cell carcinomas and adenocarcinomas. These findings suggest that CD109 may become a molecular target for the development of new therapeutics for squamous cell carcinoma of various tissue origins. [source]


    Atomic-resolution crystal structure of Borrelia burgdorferi outer surface protein A via surface engineering

    PROTEIN SCIENCE, Issue 8 2006
    Koki Makabe
    Abstract Outer surface protein A (OspA) from Borrelia burgdorferi has an unusual dumbbell-shaped structure in which two globular domains are connected with a "single-layer" ,-sheet (SLB). The protein is highly soluble, and it has been recalcitrant to crystallization. Only OspA complexes with Fab fragments have been successfully crystallized. OspA contains a large number of Lys and Glu residues, and these "high entropy" residues may disfavor crystal packing because some of them would need to be immobilized in forming a crystal lattice. We rationally designed a total of 13 surface mutations in which Lys and Glu residues were replaced with Ala or Ser. We successfully crystallized the mutant OspA without a bound Fab fragment and extended structure analysis to a 1.15 Å resolution. The new high-resolution structure revealed a unique backbone hydration pattern of the SLB segment in which water molecules fill the "weak spots" on both faces of the antiparallel ,-sheet. These well-defined water molecules provide additional structural links between adjacent ,-strands, and thus they may be important for maintaining the rigidity of the SLB that inherently lacks tight packing afforded by a hydrophobic core. The structure also revealed new information on the side-chain dynamics and on a solvent-accessible cavity in the core of the C-terminal globular domain. This work demonstrates the utility of extensive surface mutation in crystallizing recalcitrant proteins and dramatically improving the resolution of crystal structures, and provides new insights into the stabilization mechanism of OspA. [source]


    Group A streptococcus cell-associated pathogenic proteins as revealed by growth in hyaluronic acid-enriched media

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 9 2007
    Meng Zhang Dr.
    Abstract Group A streptococcus (GAS), also know as Streptococcus pyogenes, is a human pathogen and can cause several fatal invasive diseases such as necrotising fasciitis, the so-called flesh-eating disease, and toxic shock syndrome. The destruction of connective tissue and the hyaluronic acid (HA) therein, is a key element of GAS pathogenesis. We therefore propagated GAS in HA-enriched growth media in an attempt to create a simple biological system that could reflect some elements of GAS pathogenesis. Our results show that several recognised virulence factors were up-regulated in HA-enriched media, including the M1 protein, a collagen-like surface protein and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, which has been shown to play important roles in streptococcal pathogenesis. Interestingly, two hypothetical proteins of unknown function were also up-regulated and detailed bioinformatics analysis showed that at least one of these hypothetical proteins is likely to be involved in pathogenesis. It was therefore concluded that this simple biological system provided a valuable tool for the identification of potential GAS virulence factors. [source]


    A role for caleosin in degradation of oil-body storage lipid during seed germination

    THE PLANT JOURNAL, Issue 6 2006
    Marianne Poxleitner
    Summary Caleosin is a Ca2+ -binding oil-body surface protein. To assess its role in the degradation of oil-bodies, two independent insertion mutants lacking caleosin were studied. Both mutants demonstrated significant delay of breakdown of the 20:1 storage lipid at 48 and 60 h of germination. Additionally, although germination rates for seeds were not affected by the mutations, mutant seedlings grew more slowly than wild type when measured at 48 h of germination, a defect that was corrected with continued growth for 72 and 96 h in the light. After 48 h of germination, wild-type central vacuoles had smooth contours and demonstrated internalization of oil bodies and of membrane containing , - and , -tonoplast intrinsic proteins (TIPs), markers for protein storage vacuoles. In contrast, mutant central vacuoles had distorted limiting membranes displaying domains with clumps of the two TIPs, and they contained fewer oil bodies. Thus, during germination caleosin plays a role in the degradation of storage lipid in oil bodies. Its role involves both the normal modification of storage vacuole membrane and the interaction of oil bodies with vacuoles. The results indicate that interaction of oil bodies with vacuoles is one mechanism that contributes to the degradation of storage lipid. [source]


    HLA,DR alleles determine responsiveness to Borrelia burgdorferi antigens in a mouse model of self-perpetuating arthritis

    ARTHRITIS & RHEUMATISM, Issue 12 2009
    Bettina Panagiota Iliopoulou
    Objective Arthritis is a prominent manifestation of Lyme disease, which is caused by infection with Borrelia burgdorferi (Bb). Chronic Lyme arthritis persisting even after antibiotic treatment is linked to HLA,DRB1*0401 (DR4) and related alleles. In contrast, patients whose Lyme arthritis resolves within 3 months postinfection show an increased frequency of HLA,DRB1*1101 (DR11). The aim of this study was to analyze the underlying mechanism by which HLA,DR alleles confer genetic susceptibility or resistance to antibiotic-refractory Lyme arthritis. Methods We generated DR11-transgenic (DR11-Tg) mice on a murine MHCII,/, background and compared their immune response to Bb antigens with the response of DR4-Tg mice after immunization with Bb outer surface protein A (OspA) or infection with live Bb. Results T cells from OspA-immunized and Bb-infected DR11-Tg mice had defective production of interferon-, as compared with those from DR4-Tg mice. In contrast, DR11-Tg mice developed higher titers of anti-OspA and anti-Bb antibodies, respectively, than did DR4-Tg mice. Consistent with this observation, we found that the Bb-infected DR11-Tg mice had a decreased spirochetal burden as compared with the DR4-Tg mice, as measured by quantitative polymerase chain reaction. Conclusion This study provides direct evidence that in the presence of HLA,DR11, the immune response against Bb antigens is directed toward a protective antibody response. In contrast, an inflammatory Th1 response is induced in the presence of DR4. These observations offer an explanation for the differential genetic susceptibility of DR4+ and DR11+ individuals to the development of chronic Lyme arthritis and, eventually, the progression to antibiotic-refractory Lyme arthritis. [source]


    HLA type and immune response to Borrelia burgdorferi outer surface protein a in people in whom arthritis developed after Lyme disease vaccination

    ARTHRITIS & RHEUMATISM, Issue 4 2009
    Robert Ball
    Objective To investigate whether persons with treatment-resistant Lyme arthritis,associated HLA alleles might develop arthritis as a result of an autoimmune reaction triggered by Borrelia burgdorferi outer surface protein A (OspA), the Lyme disease vaccine antigen. Methods Persons in whom inflammatory arthritis had developed after Lyme disease vaccine (cases) were compared with 3 control groups: 1) inflammatory arthritis but not Lyme disease vaccine (arthritis controls), 2) Lyme disease vaccine but not inflammatory arthritis (vaccine controls), and 3) neither Lyme disease vaccine nor inflammatory arthritis (normal controls). HLA,DRB1 allele typing, Western blotting for Lyme antigen, and T cell reactivity testing were performed. Results Twenty-seven cases were matched with 162 controls (54 in each control group). Odds ratios (ORs) for the presence of 1 or 2 treatment-resistant Lyme arthritis alleles were 0.8 (95% confidence interval [95% CI] 0.3-2.1), 1.6 (95% CI 0.5,4.4), and 1.75 (95% CI 0.6,5.3) in cases versus arthritis controls, vaccine controls, and normal controls, respectively. There were no significant differences in the frequency of DRB1 alleles. T cell response to OspA was similar between cases and vaccine controls, as measured using the stimulation index (OR 1.6 [95% CI 0.5,5.1]) or change in uptake of tritiated thymidine (counts per minute) (OR 0.7 [95% CI 0.2,2.3]), but cases were less likely to have IgG antibodies to OspA (OR 0.3 [95% CI 0.1,0.8]). Cases were sampled closer to the time of vaccination (median 3.59 years versus 5.48 years), and fewer cases had received 3 doses of vaccine (37% versus 93%). Conclusion Treatment-resistant Lyme arthritis alleles were not found more commonly in persons who developed arthritis after Lyme disease vaccination, and immune responses to OspA were not significantly more common in arthritis cases. These results suggest that Lyme disease vaccine is not a major factor in the development of arthritis in these cases. [source]


    Characterization of gadolinium complexes for SAD phasing in macromolecular crystallography: application to CbpF

    ACTA CRYSTALLOGRAPHICA SECTION D, Issue 8 2009
    Rafael Molina
    Seven Gd complexes were used in the preparation of heavy-atom derivatives for solving the structure of choline-binding protein F (CbpF), a 36,kDa surface protein from Streptococcus pneumoniae, by the SAD method. CbpF was used as a model system to analyse the phasing capability of each of the derivatives. Three different aspects have been systematically characterized: the efficacy of cocrystallization versus soaking in the binding of the different Gd complexes, their mode of interaction and a comparative study of SAD phasing using synchrotron radiation and using a rotating-anode generator. This study reveals the striking potential of these complexes for SAD phasing using a laboratory source and further reinforces their relevance for high-throughput macromolecular crystallography. [source]


    Crystallization and preliminary X-ray analysis of LipL32 from Leptospira interrogans serovar Copenhageni

    ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2009
    Pricila Hauk
    LipL32 is a major surface protein that is expressed during infection by pathogenic Leptospira. Here, the crystallization of recombinant LipL3221,272, which corresponds to the mature LipL32 protein minus its N-terminal lipid-anchored cysteine residue, is described. Selenomethionine-labelled LipL3221,272 crystals diffracted to 2.25,Å resolution at a synchrotron source. The space group was P3121 or P3221 and the unit-cell parameters were a = b = 126.7, c = 96.0,Å. [source]


    Merozoite surface protein 2 of Plasmodium falciparum: Expression, structure, dynamics, and fibril formation of the conserved N-terminal domain

    BIOPOLYMERS, Issue 1 2007
    Andrew Low
    Abstract Merozoite surface protein 2 (MSP2) is a GPI-anchored protein on the surface of the merozoite stage of the malaria parasite Plasmodium falciparum. It is largely disordered in solution, but has a propensity to form amyloid-like fibrils under physiological conditions. The N-terminal conserved region (MSP21,25) is part of the protease-resistant core of these fibrils. To investigate the structure and dynamics of this region, its ability to form fibrils, and the role of individual residues in these properties, we have developed a bacterial expression system that yields ,10 mg of unlabeled or 15N-labeled peptide per litre of culture. Two recombinant versions of MSP21,25, wild-type and a Y7A/Y16A mutant, have been produced. Detailed conformational analysis of the wild-type peptide and backbone 15N relaxation data indicated that it contains ,-turn and nascent helical structures in the central and C-terminal regions. Residues 6,21 represent the most ordered region of the structure, although there is some flexibility around residues 8 and 9. The 10-residue sequence (MSP27,16) (with two Tyr residues) was predicted to have a higher propensity for ,-aggregation than the 8-mer sequence (MSP28,15), but there was no significant difference in conformation between MSP21,25 and [Y7A,Y16A]MSP21,25 and the rate of fibril formation was only slightly slower in the mutant. The peptide expression system described here will facilitate further mutational analyses to define the roles of individual residues in transient structural elements and fibril formation, and thus contribute to the further development of MSP2 as a malaria vaccine candidate. © 2007 Wiley Periodicals, Inc. Biopolymers 87: 12,22, 2007. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]