Home About us Contact | |||
Superficial Dorsal Horn (superficial + dorsal_horn)
Selected AbstractsLocal and descending circuits regulate long-term potentiation and zif268 expression in spinal neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006Lars Jørgen Rygh Abstract Long-term potentiation (LTP), a use dependent long-lasting modification of synaptic strength, was first discovered in the hippocampus and later shown to occur in sensory areas of the spinal cord. Here we demonstrate that spinal LTP requires the activation of a subset of superficial spinal dorsal horn neurons expressing the neurokinin-1 receptor (NK1-R) that have previously been shown to mediate certain forms of hyperalgesia. These neurons participate in local spinal sensory processing, but are also the origin of a spino-bulbo-spinal loop driving a 5-hydroxytryptamine 3 receptor (5HT3-R)- mediated descending facilitation of spinal pain processing. Using a saporin-substance P conjugate to produce site-specific neuronal ablation, we demonstrate that NK1-R expressing cells in the superficial dorsal horn are crucial for the generation of LTP-like changes in neuronal excitability in deep dorsal horn neurons and this is modulated by descending 5HT3-R-mediated facilitatory controls. Hippocampal LTP is associated with early expression of the immediate-early gene zif268 and knockout of the gene leads to deficits in long-term LTP and learning and memory. We found that spinal LTP is also correlated with increased neuronal expression of zif268 in the superficial dorsal horn and that zif268 antisense treatment resulted in deficits in the long-term maintenance of inflammatory hyperalgesia. Our results support the suggestion that the generation of LTP in dorsal horn neurons following peripheral injury may be one mechanism whereby acute pain can be transformed into a long-term pain state. [source] Long-range oscillatory Ca2+ waves in rat spinal dorsal hornEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2005Ruth Ruscheweyh Abstract Synchronous activity of large populations of neurons shapes neuronal networks during development. However, re-emergence of such activity at later stages of development could severely disrupt the orderly processing of sensory information, e.g. in the spinal dorsal horn. We used Ca2+ imaging in spinal cord slices of neonatal and young rats to assess under which conditions synchronous activity occurs in dorsal horn. No spontaneous synchronous Ca2+ transients were detected. However, increasing neuronal excitability by application of 4-aminopyridine after pretreatment of the slice with blockers of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate, ,-aminobutyric acid (GABA)A and glycine receptors evoked repetitive Ca2+ waves in dorsal horn. These waves spread mediolaterally with a speed of 1.0 ± 0.1 mm/s and affected virtually every dorsal horn neuron. The Ca2+ waves were associated with large depolarizing shifts of the membrane potential of participating neurons and were most likely synaptically mediated because they were abolished by blockade of action potentials or N -methyl- d -aspartate (NMDA) receptors. They were most pronounced in the superficial dorsal horn and absent from the ventral horn. A significant proportion of the Ca2+ waves spread to the contralateral dorsal horn. This seemed to be enabled by disinhibition as primary afferent-induced dorsal horn excitation crossed the midline only when GABAA and glycine receptors were blocked. Interestingly, the Ca2+ waves occurred under conditions where AMPA/kainate receptors were blocked. Thus, superficial dorsal horn NMDA receptors are able to sustain synchronous neuronal excitation in the absence of functional AMPA/kainate receptors. [source] Immunohistochemical and hodological characterization of calbindin-D28k-containing neurons in the spinal cord of the turtle, Pseudemys scripta elegansMICROSCOPY RESEARCH AND TECHNIQUE, Issue 2 2007Ruth Morona Abstract Neurons and fibers containing the calcium-binding protein calbindin-D28k (CB) were studied by immunohistochemical techniques in the spinal cord of adult and juvenile turtles, Pseudemys scripta elegans. Abundant cell bodies and fibers immunoreactive for CB were widely and distinctly distributed throughout the spinal cord. Most neurons and fibers were labeled in the superficial dorsal horn, but numerous cells were also located in the intermediate gray and ventral horn. In the dorsal horn, most CB-containing cells were located in close relation to the synaptic fields formed by primary afferents, which were not labeled for CB. Double immunohistofluorescence demonstrated distinct cell populations in the dorsal horn labeled only for CB or nitric oxide synthase, whereas in the dorsal part of the ventral horn colocalization of nitric oxide synthase was found in about 6% of the CB-immunoreactive cells in this region. Choline acetyltransferase immunohistochemistry revealed that only about 2% of the neurons in the dorsal part of the ventral horn colocalized CB, whereas motoneurons were not CB-immunoreactive. The involvement of CB-containing neurons in ascending spinal projections to the thalamus, tegmentum, and reticular formation was demonstrated combining the retrograde transport of dextran amines and immunohistochemistry. Similar experiments demonstrated supraspinal projections from CB-containing cells mainly located in the reticular formation but also in the thalamus and the vestibular nucleus. The revealed organization of the neurons and fibers containing CB in the spinal cord of the turtle shares distribution and developmental features, colocalization with other neuronal markers, and connectivity with other tetrapods and, in particular with mammals. Microsc. Res. Tech., 2007. © 2007 Wiley-Liss, Inc. [source] Differential changes in brain-derived neurotrophic factor and extracellular signal-regulated kinase in rat primary afferent pathways with colitisNEUROGASTROENTEROLOGY & MOTILITY, Issue 8 2008L.-y. Qiao Abstract, Brain-derived neurotrophic factor (BDNF) has been postulated to participate in inflammation-induced visceral hypersensitivity by modulating the sensitivity of visceral afferents through the activation of intracellular signalling pathways such as the extracellular signal-regulated kinase (ERK) pathway. In the current study, we assessed the expression levels of BDNF and phospho-ERK in lumbosacral dorsal root ganglia (DRG) and spinal cord before and during tri-nitrobenzene sulfonic acid (TNBS)-induced colitis in rats with real-time PCR, ELISA, western blot and immunohistochemical techniques. BDNF mRNA and protein levels were increased in L1 and S1 but not L6 DRG when compared with control (L1: two- to five-fold increases, P < 0.05; S1: two- to three-fold increases, P < 0.05); however, BDNF protein but not mRNA level was increased in L1 and S1 spinal cord when compared with control. In parallel, TNBS colitis significantly induced phospho-ERK1/2 expression in L1 (four- to five-fold, P < 0.05) and S1 (two- to three-fold, P < 0.05) but not in L6 spinal cord levels. Immunohistochemistry results showed that the increase in phospho-ERK1/2 expression occurred at the region of the superficial dorsal horn and grey commisure of the spinal cord. In contrast, there was no change in phospho-ERK5 in any level of the spinal cord examined during colitis. The regional and time-specific changes in the levels of BDNF mRNA, protein and phospho-ERK with colitis may be a result of increased transcription of BDNF in DRG and anterograde transport of BDNF from DRG to spinal cord where it activates intracellular signalling molecules such as ERK1/2. [source] |