Sugar Donor (sugar + donor)

Distribution by Scientific Domains


Selected Abstracts


Synthesis of 2-C-Branched Oligo(glyco,amino acid)s (OGAAs) by Ring Opening of 1,2-Cyclopropanecarboxylated Sugar Donors

CHEMISTRY - A EUROPEAN JOURNAL, Issue 31 2009
Perali, Ramu Sridhar Dr.
Hybrid theory: 1,2-Cyclopropanecarboxylated sugars were used as glycosyl donors for the first time in the synthesis of 2-C-branched oligo(glyco,amino acid)s (OGAAs; see scheme) decorated with ,-amino acids. The method was applied to an acceptor-reactivity-based stereo- and regioselective glycosylation reaction towards the preparation of several disaccharide-derived glyco,amino acid derivatives. [source]


Identification of two cysteine residues involved in the binding of UDP-GalNAc to UDP-GalNAc:polypeptide N -acetylgalactosaminyltransferase 1 (GalNAc-T1)

FEBS JOURNAL, Issue 17 2002
Mari Tenno
Biosynthesis of mucin-type O-glycans is initiated by a family of UDP-GalNAc:polypeptide N -acetylgalactosaminyltransferases, which contain several conserved cysteine residues among the isozymes. We found that a cysteine-specific reagent, p- chloromercuriphenylsulfonic acid (PCMPS), irreversibly inhibited one of the isozymes (GalNAc-T1). Presence of either UDP-GalNAc or UDP during PCMPS treatment protected GalNAc-T1 from inactivation, to the same extent. This suggests that GalNAc-T1 contains free cysteine residues interacting with the UDP moiety of the sugar donor. For the functional analysis of the cysteine residues, several conserved cysteine residues in GalNAc-T1 were mutated individually to alanine. All of the mutations except one resulted in complete inactivation or a drastic decrease in the activity, of the enzyme. We identified only Cys212 and Cys214, among the conserved cysteine residues in GalNAc-T1, as free cysteine residues, by cysteine-specific labeling of GalNAc-T1. To investigate the role of these two cysteine residues, we generated cysteine to serine mutants (C212S and C214S). The serine mutants were more active than the corresponding alanine mutants (C212A and C214A). Kinetic analysis demonstrated that the affinity of the serine-mutants for UDP-GalNAc was decreased, as compared to the wild type enzyme. The affinity for the acceptor apomucin, on the other hand, was essentially unaffected. The functional importance of the introduced serine residues was further demonstrated by the inhibition of all serine mutant enzymes with diisopropyl fluorophosphate. In addition, the serine mutants were more resistant to modification by PCMPS. Our results indicate that Cys212 and Cys214 are sites of PCMPS modification, and that these cysteine residues are involved in the interaction with the UDP moiety of UDP-GalNAc. [source]


Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxin

FEBS JOURNAL, Issue 14 2001
Goro Taguchi
Scopoletin is one of the phytoalexins in tobacco. Cells of the T-13 cell line (Nicotiana tabacum L. Bright Yellow) accumulate a large amount of scopoletin, also known as 7-hydroxy-6-methoxycoumarin, as a glucoconjugate, scopolin, in vacuoles. We report here the molecular cloning of glucosyltransferases that can catalyze the glucosylation of many kinds of secondary metabolites including scopoletin. Two cDNAs encoding glucosyltransferase (NtGT1a and NtGT1b) were isolated from a cDNA library derived from the tobacco T-13 cell line by screening with heterologous cDNAs as a probe. The deduced amino-acid sequences of NtGT1a and NtGT1b exhibited 92% identity with each other, ,,20,50% identities with other reported glucosyltransferases. Heterologous expression of these genes in Escherichia coli showed that the recombinant enzymes had glucosylation activity against both flavonoids and coumarins. They also strongly reacted with 2-naphthol as a substrate. These recombinant enzymes can utilize UDP-glucose as the sugar donor, but they can also utilize UDP-xylose as a weak donor. RNA blot analysis showed that these genes are induced by salicylic acid and auxin, but the time course of the expression was different. This result is similar to the changes in scopoletin glucosylation activity in these tobacco cells after addition of these plant growth regulators. These results might suggest that one of the roles of the products of these genes is scopoletin glucosylation, in response to salicylic acid and/or auxin, together with the other glucosyltransferases in tobacco cells. [source]


Conserved cytoplasmic motifs that distinguish sub-groups of the polyprenol phosphate:N -acetylhexosamine-1-phosphate transferase family

FEMS MICROBIOLOGY LETTERS, Issue 2 2000
Matt S. Anderson
Abstract WecA, MraY and WbcO are conserved members of the polyprenol phosphate:N -acetylhexosamine-1-phosphate transferase family involved in the assembly of bacterial cell walls, and catalyze reactions involving a membrane-associated polyprenol phosphate acceptor substrate and a cytoplasmically located UDP- D -amino sugar donor. MraY, WbcO and WecA purportedly utilize different UDP-sugars, although the molecular basis of this specificity is largely unknown. However, domain variations involved in specificity are predicted to occur on the cytoplasmic side of the membrane, adjacent to conserved domains involved in the mechanistic activity, and with access to the cytoplasmically located sugar nucleotides. Conserved C-terminal domains have been identified that satisfy these criteria. Topological analyses indicate that they form the highly basic, fifth cytoplasmic loop between transmembrane regions IX and X. Four diverse loops are apparent, for MraY, WecA, WbcO and RgpG, that uniquely characterize these sub-groups of the transferase family, and a correlation is evident with the known or implied UDP-sugar specificity. [source]