Home About us Contact | |||
Sugar Beet Pulp (sugar + beet_pulp)
Selected AbstractsThermal properties of extruded/injection-molded poly(lactic acid) and biobased composites,,JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008Abdellatif A. Mohamed Abstract To determine the degree of compatibility between poly(lactic acid) and different biomaterials (fibers), poly(lactic acid) was compounded with sugar beet pulp and apple fibers. The fibers were added in 85 : 15 and 70 : 30 poly(lactic acid)/fiber ratios. The composites were blended by extrusion followed by injection molding. Differential scanning calorimetry and thermogravimetric analysis were used to analyze the extruded and extruded/injection-molded composites. After melting in sealed differential scanning calorimetry pans, the composites were cooled through immersion in liquid nitrogen and aged (stored) at room temperature for 0, 7, 15, and 30 days. After storage, the samples were heated from 25 to 180°C at 10°C/min. The neat poly(lactic acid) showed a glass-transition transition at 59°C with a change in heat capacity (,Cp) value of 0.464. The glass transition was followed by crystallization and melting transitions. The enthalpic relaxation of the poly(lactic acid) and composites steadily increased as a function of the storage time. Although the presence of fibers had little effect on the enthalpic relaxation, injection molding reduced the enthalpic relaxation. The crystallinity percentage of the unprocessed neat poly(lactic acid) dropped by 95% after extrusion and by 80% for the extruded/injection-molded composites. The degradation was performed in air and nitrogen environments. The degradation activation energy of neat poly(lactic acid) exhibited a significant drop in the nitrogen environment, although it increased in air. This meant that the poly(lactic acid) was more resistant to degradation in the presence of oxygen. Overall, injection molding appeared to reduce the activation energy for all the composites. Sugar beet pulp significantly reduced the activation energy in a nitrogen environment. In an air environment, both sugar beet pulp and apple fibers increased the activation energy. The enzymatic degradation of the composites showed a higher degradation rate for the extruded samples versus the extruded/injection-molded composites, whereas the apple composites exhibited higher weight loss. The thermogravimetric analysis data showed that the degradation of unprocessed and extruded neat poly(lactic acid) followed a one-step mechanism, whereas extruded/injection-molded composites showed two-step degradation. A higher fiber content resulted in up to three-step degradation mechanisms. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source] Macronutrient digestibility, nitrogen balance, plasma indicators of protein metabolism and mineral absorption in horses fed a ration rich in sugar beet pulpJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 9-10 2004A. F. S. Olsman Summary In a cross-over study with six mature horses, the effect of iso-energetic replacement of dietary glucose by beet pulp on macronutrient digestibility, nitrogen metabolism and mineral absorption was studied. The test ration contained 25% beet pulp in the total dietary dry matter. Beet pulp feeding significantly lowered crude fat and non-structural carbohydrate digestibility, but had no significant effect on digestibility of other macronutrients, faecal and urinary nitrogen excretion and the faecal to urinary nitrogen excretion quotient. However, on the beet pulp diet, plasma ammonia and creatinin concentrations were significantly lower than on the glucose diet. No diet effect on magnesium absorption was observed. It is suggested that dietary beet pulp stimulates the conversion of ammonia into urea. [source] Thermal properties of extruded/injection-molded poly(lactic acid) and biobased composites,,JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008Abdellatif A. Mohamed Abstract To determine the degree of compatibility between poly(lactic acid) and different biomaterials (fibers), poly(lactic acid) was compounded with sugar beet pulp and apple fibers. The fibers were added in 85 : 15 and 70 : 30 poly(lactic acid)/fiber ratios. The composites were blended by extrusion followed by injection molding. Differential scanning calorimetry and thermogravimetric analysis were used to analyze the extruded and extruded/injection-molded composites. After melting in sealed differential scanning calorimetry pans, the composites were cooled through immersion in liquid nitrogen and aged (stored) at room temperature for 0, 7, 15, and 30 days. After storage, the samples were heated from 25 to 180°C at 10°C/min. The neat poly(lactic acid) showed a glass-transition transition at 59°C with a change in heat capacity (,Cp) value of 0.464. The glass transition was followed by crystallization and melting transitions. The enthalpic relaxation of the poly(lactic acid) and composites steadily increased as a function of the storage time. Although the presence of fibers had little effect on the enthalpic relaxation, injection molding reduced the enthalpic relaxation. The crystallinity percentage of the unprocessed neat poly(lactic acid) dropped by 95% after extrusion and by 80% for the extruded/injection-molded composites. The degradation was performed in air and nitrogen environments. The degradation activation energy of neat poly(lactic acid) exhibited a significant drop in the nitrogen environment, although it increased in air. This meant that the poly(lactic acid) was more resistant to degradation in the presence of oxygen. Overall, injection molding appeared to reduce the activation energy for all the composites. Sugar beet pulp significantly reduced the activation energy in a nitrogen environment. In an air environment, both sugar beet pulp and apple fibers increased the activation energy. The enzymatic degradation of the composites showed a higher degradation rate for the extruded samples versus the extruded/injection-molded composites, whereas the apple composites exhibited higher weight loss. The thermogravimetric analysis data showed that the degradation of unprocessed and extruded neat poly(lactic acid) followed a one-step mechanism, whereas extruded/injection-molded composites showed two-step degradation. A higher fiber content resulted in up to three-step degradation mechanisms. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source] Heterologous production of the Piromyces equi cinnamoyl esterase in Trichoderma reesei for biotechnological applicationsLETTERS IN APPLIED MICROBIOLOGY, Issue 6 2009L. Poidevin Abstract Aims:, The objective of the study was to produce and characterize the cinnamoyl esterase EstA from the anaerobic fungus Piromyces equi for potential industrial applications. Methods and Results:, The catalytic domain EstA was produced in Trichoderma reesei. Because the two fungi displayed different genome features, including different codon usage and GC content, a synthetic gene was designed and expressed, leading to the production of the corresponding protein at around 33 mg per litre in the T. reesei culture medium. After the recombinant protein was purified, biochemical characterization showed that EstA presents peak activity at pH 6·5 and at 50,60°C. Furthermore, EstA remained stable at pH 6,8 and below 50°C. EstA was compared to cinnamoyl esterases FaeA and FaeB from Aspergillus niger in terms of ferulic acid (FA) release from wheat bran (WB), maize bran (MB) and sugar beet pulp (SBP). Conclusion:, The synthetic gene was successfully cloned and overexpressed in T. reesei. EstA from P. equi was demonstrated to efficiently release FA from various natural substrates. Significance and Impact of the Study:, Recombinant EstA produced in an industrial enzyme producer, T. reesei, was biochemically characterized, and its capacity to release an aromatic compound (FA) for biotechnological applications was demonstrated. [source] |