Successful Infection (successful + infection)

Distribution by Scientific Domains


Selected Abstracts


In vitro leaf inoculation studies as an indication of tree foliage susceptibility to Phytophthora ramorum in the UK

PLANT PATHOLOGY, Issue 4 2005
S. Denman
Leaves of 11 coniferous and 23 broad-leaved tree species important to UK forestry were tested for their susceptibility to the quarantine pathogen Phytophthora ramorum using a detached leaf assay. Two European and two USA isolates were used. Wounded and unwounded leaves were dipped in zoospore suspensions during summer; conifers were also tested in winter. Successful infection of tissue and amount of necrosis were assessed. Highly susceptible broad-leaved hosts included Aesculus hippocastanum, Fraxinus excelsior, Quercus ilex, Ulmus procera and, to a lesser extent, Castanea sativa, Q. cerris and Q. petraea, together with Umbellularia californica and rhododendrons. Acer pseudoplatanus, Alnus glutinosa, Carpinus betulus, Corylus avellana, Fagus sylvatica, Prunus avium, Q. robur, Q. rubra and Q. suber showed consistently low susceptibility. Conifer species including Abies procera, Picea abies, P. sitchensis, Pseudotsuga menziesii, Sequoia sempervirens and Tsuga heterophylla were also susceptible. Pseudotsuga menziesii and A. procera were severely affected. Pinus contorta, P. nigra var. maritima and P. sylvestris were virtually resistant, while Taxus baccata was only slightly affected. Increased necrosis was apparent on leaves that were wounded prior to inoculation. These results extend the known range of trees that P. ramorum is able to attack and confirm its relative host-nonspecificity. [source]


Novel archaeal plasmid pAH1 and its interactions with the lipothrixvirus AFV1

MOLECULAR MICROBIOLOGY, Issue 1 2009
Tamara Basta
Summary At present very little is known about interactions between extrachromosomal genetic elements in Archaea. Here we describe an Acidianus strain which carries naturally a novel 28 kb conjugative plasmid-like element, pAH1, and also serves as a laboratory host for lipothrixvirus AFV1. In an attempt to establish a system for studying plasmid,virus interactions we characterized the genome of pAH1 which closely resembles those of the Sulfolobus conjugative plasmids pARN3 and pARN4. pAH1 integrates site specifically into, and excises from, the host chromosome indicating a dynamic interaction with the latter. Although nucleotide sequence comparisons revealed extensive intergenomic exchange during the evolution of archaeal conjugative plasmids, pAH1 was shown to be stably maintained suggesting that the host system is suitable for studying plasmid,virus interactions. AFV1 infection and propagation leads to a loss of the circular form of pAH1 and this effect correlates positively with the increase in the intracellular quantity of AFV1 DNA. We infer that the virus inhibits plasmid replication since no pAH1 degradation was observed. This mechanism of archaeal viral inhibition of plasmid propagation is not observed in bacteria where relevant bacteriophages either are dependent on a conjugative plasmid for successful infection or are excluded by a resident plasmid. [source]


The ins and outs of HIV replication

CELLULAR MICROBIOLOGY, Issue 5 2005
Candace Gomez
Summary The life cycle of HIV-1 involves a series of steps necessary for the successful infection of human target cells. First the RNA genome enters the cytoplasm after the fusion of the viral membrane and that of the target cell. The RNA genome is then converted to DNA form through the process of reverse transcription. The DNA genome is then integrated into the host cell DNA. Next, viral proteins and more copies of the viral genome are produced. These components assemble to form new virions that are then able to propagate. The cellular proteins involved in HIV-1 entry have been known for more than a decade now and the study of the cellular and viral components involved in HIV-1 entry has led to the development of many therapeutic strategies and drugs designed to block viral replication. Recently, there have been significant advances in the understanding of HIV-1 assembly as a consequence of the identification of the cellular factors that mediate this process. This review will provide a basic outline of the current understanding of HIV-1 entry and exit. [source]


A co-operative interaction between Neisseria gonorrhoeae and complement receptor 3 mediates infection of primary cervical epithelial cells

CELLULAR MICROBIOLOGY, Issue 9 2002
Jennifer L. Edwards
Summary Little is known about the pathogenesis of gonococcal infection within the lower female genital tract. We recently described the distribution of complement receptor 3 (CR3) on epithelia of the female genital tract. Our studies further indicate that CR3-mediated endocytosis serves as a primary mechanism by which N. gonorrhoeae elicits membrane ruffling and cellular invasion of primary, human, cervical epithelial cells. We have extended these studies to describe the nature of the gonococcus,CR3 interaction. Western Blot analysis demonstrated production of alternative pathway complement components by ecto- and endocervical cells which allows C3b deposition on gonococci and its rapid conversion to iC3b. Anti-iC3b and -factor I antibodies significantly inhibited adherence and invasion of primary cervical cells, suggesting that iC3b covalently bound to the gonococcus serves as a primary ligand for CR3 adherence. However, gonococcal porin and pili also bound to the I-domain of CR3 in a non-opsonic manner. Binding of porin and pili to CR3 were required for adherence to and invasion of cervical epithelia. Collectively, these data suggest that gonococcal adherence to CR3 occurs in a co-operative manner, which requires gonococcal iC3b-opsonization, porin and pilus. In conjunction, these molecules facilitate targeting to and successful infection of the cervical epithelium. [source]