Home About us Contact | |||
Substantial Equivalence (substantial + equivalence)
Selected AbstractsCE-TOF MS analysis of complex protein hydrolyzates from genetically modified soybeans , A tool for foodomicsELECTROPHORESIS, Issue 7 2010Carolina Simó Abstract A CE-TOF MS proteomic approach was applied for the analysis of hydrolyzates from complex soybean protein mixtures. After CE-TOF MS method development, the new approach provided the simultaneous analysis of more than 150 peptides from the soybean protein fraction soluble in ACN-water (80/20,v/v). The method is fast (about 30,min of analysis per sample) and is characterized by a relatively low running cost. The approach was used to study the substantial equivalence between a genetically modified variety of soybean compared with its traditional counterpart. No significant differences were found between the two studied soybeans based on the protein fraction studied. The capacity of the CE-TOF MS method to analyze complex mixtures of peptides in short times opens interesting possibilities in the growing Foodomics area. [source] A metabolomic study of substantial equivalence of field-grown genetically modified wheatPLANT BIOTECHNOLOGY JOURNAL, Issue 4 2006John M. Baker Summary The ,substantial equivalence' of three transgenic wheats expressing additional high-molecular-weight subunit genes and the corresponding parental lines (two lines plus a null transformant) was examined using metabolite profiling of samples grown in replicate field trials on two UK sites (Rothamsted, Hertfordshire and Long Ashton, near Bristol) for 3 years. Multivariate comparison of the proton nuclear magnetic resonance spectra of polar metabolites extracted with deuterated methanol,water showed a stronger influence of site and year than of genotype. Nevertheless, some separation between the transgenic and parental lines was observed, notably between the transgenic line B73-6-1 (which had the highest level of transgene expression) and its parental line L88-6. Comparison of the spectra showed that this separation resulted from increased levels of maltose and/or sucrose in this transgenic line, and that differences in free amino acids were also apparent. More detailed studies of the amino acid composition of material grown in 2000 were carried out using gas chromatography-mass spectrometry. The most noticeable difference was that the samples grown at Rothamsted consistently contained larger amounts of acidic amino acids (glutamic, aspartic) and their amides (glutamine, asparagine). In addition, the related lines, L88-6 and B73-6-1, both contained larger amounts of proline and ,-aminobutyric acid when grown at Long Ashton than at Rothamsted. The results clearly demonstrate that the environment affects the metabolome and that any differences between the control and transgenic lines are generally within the same range as the differences observed between the control lines grown on different sites and in different years. [source] The stability of the Arabidopsis transcriptome in transgenic plants expressing the marker genes nptII and uidATHE PLANT JOURNAL, Issue 6 2005Souad El Ouakfaoui Summary The ATH1 Arabidopsis GeneChip from Affymetrix was used to search for transcriptome changes in Arabidopsis associated with the strong expression of transgenes regulated by constitutive promoters. The insertion and expression of the commonly used marker genes, uidA and nptII, did not induce changes to the expression patterns of the approximately 24 000 genes that were screened under optimal growth conditions and under physiological stress imposed by low temperatures. Approximately 8000 genes (35% of the Arabidopsis genome) underwent changes in gene expression in both wild-type and transgenic plants under abiotic stresses such as salt, dehydration, cold, and heat. This study provides detailed information on the extent of non-targeted or pleiotropic effects of transgenes on plants and shows that the transgenic and non-transgenic plants were equivalent in their global patterns of transcription. This information may help to extend our understanding and interpretation of the principle of substantial equivalence which is used as a first step in the biosafety evaluation of transgenic crops. [source] A metabolomic study of substantial equivalence of field-grown genetically modified wheatPLANT BIOTECHNOLOGY JOURNAL, Issue 4 2006John M. Baker Summary The ,substantial equivalence' of three transgenic wheats expressing additional high-molecular-weight subunit genes and the corresponding parental lines (two lines plus a null transformant) was examined using metabolite profiling of samples grown in replicate field trials on two UK sites (Rothamsted, Hertfordshire and Long Ashton, near Bristol) for 3 years. Multivariate comparison of the proton nuclear magnetic resonance spectra of polar metabolites extracted with deuterated methanol,water showed a stronger influence of site and year than of genotype. Nevertheless, some separation between the transgenic and parental lines was observed, notably between the transgenic line B73-6-1 (which had the highest level of transgene expression) and its parental line L88-6. Comparison of the spectra showed that this separation resulted from increased levels of maltose and/or sucrose in this transgenic line, and that differences in free amino acids were also apparent. More detailed studies of the amino acid composition of material grown in 2000 were carried out using gas chromatography-mass spectrometry. The most noticeable difference was that the samples grown at Rothamsted consistently contained larger amounts of acidic amino acids (glutamic, aspartic) and their amides (glutamine, asparagine). In addition, the related lines, L88-6 and B73-6-1, both contained larger amounts of proline and ,-aminobutyric acid when grown at Long Ashton than at Rothamsted. The results clearly demonstrate that the environment affects the metabolome and that any differences between the control and transgenic lines are generally within the same range as the differences observed between the control lines grown on different sites and in different years. [source] |