Home About us Contact | |||
Subduction Zone (subduction + zone)
Selected AbstractsThe tectonic regime along the Andes: Present-day and Mesozoic regimesGEOLOGICAL JOURNAL, Issue 1 2010Victor A. Ramos Abstract The analyses of the main parameters controlling the present Chile-type and Marianas-type tectonic settings developed along the eastern Pacific region show four different tectonic regimes: (1) a nearly neutral regime in the Oregon subduction zone; (2) major extensional regimes as the Nicaragua subduction zone developed in continental crust; (3) a Marianas setting in the Sandwich subduction zone with ocean floored back-arc basin with a unique west-dipping subduction zone and (4) the classic and dominant Chile-type under compression. The magmatic, structural and sedimentary behaviours of these four settings are discussed to understand the past tectonic regimes in the Mesozoic Andes based on their present geological and tectonic characteristics. The evaluation of the different parameters that governed the past and present tectonic regimes indicates that absolute motion of the upper plate relative to the hotspot frame and the consequent trench roll-back velocity are the first order parameters that control the deformation. Locally, the influences of the trench fill, linked to the dominant climate in the forearc, and the age of the subducted oceanic crust, have secondary roles. Ridge collisions of seismic and seismic oceanic ridges as well as fracture zone collisions have also a local outcome, and may produce an increase in coupling that reinforces compressional deformation. Local strain variations in the past and present Andes are not related with changes in the relative convergence rate, which is less important than the absolute motion relative to the Pacific hotspot frame, or changes in the thermal state of the upper plate. Changes in the slab dip, mainly those linked to steepening subduction zones, produce significant variations in the thermal state, that are important to generate extreme deformation in the foreland. Copyright © 2009 John Wiley & Sons, Ltd. [source] Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western TurkeyGEOLOGICAL JOURNAL, Issue 5 2005Fuat Erkül Abstract Western Turkey has been dominated by N,S extension since the Early Miocene. The timing and cause of this N,S extension and related basin formation have been the subject of much debate, but new data from the Bigadiç borate basin provide insights that may solve this controversy. The basin is located in the Bornova Flysch Zone, which is thought to have formed as a major NE-trending transform zone during Late Cretaceous-Palaeocene collisional Tethyan orogenesis and later reactivated as a transfer zone of weakness, and which separates two orogenic domains having different structural evolutions. Volcanism in the Bigadiç area is characterized by two rock units that are separated by an angular unconformity. These are: (1) the Kocaiskan volcanites that gives K/Ar ages of 23,Ma, and (2) the Bigadiç volcano-sedimentary succession that yields ages of 20.6 to 17.8,Ma. Both units are unconformably overlain by Upper Miocene-Pliocene continental deposits. The Kocaiskan volcanites are related to the first episode of volcanic activity and comprise thick volcanogenic sedimentary rocks derived from subaerial andesitic intrusions, domes, lava flows and pyroclastic rocks. The second episode of volcanic activity, represented by basaltic to rhyolitic lavas and pyroclastic rocks, accompanied lacustrine,evaporitic sedimentation. Dacitic to rhyolitic volcanic rocks, called the S,nd,rg, volcanites, comprise NE-trending intrusions producing lava flows, ignimbrites, ash-fall deposits and associated volcanogenic sedimentary rocks. Other NE-trending olivine basaltic (Gölcük basalt) and trachyandesitic (Kay,rlar volcanites) intrusions and lava flows were synchronously emplaced into the lacustrine sediments. The intrusions typically display peperitic rocks along their contacts with the sedimentary rocks. It is important to note that the Gölcük basalt described here is the first recorded Early Miocene alkali basalt in western Turkey. The oldest volcanic episode occurred in the NE-trending zone when the region was still experiencing N,S compression. The angular unconformity between the two volcanic episodes marks an abrupt transition from N,S collision-related convergence to N,S extension related to retreat of the Aegean subduction zone to the south along an extensional detachment. Thrust faults with top-to-the-north sense of shear and a series of anticlines and synclines with subvertical NE-striking axial planes observed in the Bigadiç volcano-sedimentary succession suggest that NW,SE compression was reactivated following sedimentation. Geochemical data from the Bigadiç area also support the validity of the extensional regime, which was characterized by a bimodal volcanism related to extrusion of coeval alkaline and calc-alkaline volcanic rocks during the second volcanic episode. The formation of alkaline volcanic rocks dated as 19.7,±,0.4,Ma can be related directly to the onset of the N,S extensional regime in western Turkey. Copyright © 2005 John Wiley & Sons, Ltd. [source] Buried oblique-slip faults in the Irish CaledonidesGEOLOGICAL JOURNAL, Issue 2 2002D. Michael Williams Abstract Despite over a century of geological investigation, the Ordovician evolution of South Mayo, western Ireland, is still imperfectly understood. An example of this is the supposed lateral equivalence of two formations within the succession, the Rosroe and Derrylea Formations of Arenig age, exposed on opposite limbs of a major east,west syncline. These formations exhibit characteristics which suggest that they were not deposited in the same basin. Both formations contain tuff horizons. Geochemical analysis of these tuffs shows that each formation contains chemically distinct volcanic signatures suggesting deposition in separate sub-basins. Previously the Rosroe Formation on the south limb of the syncline was considered the coarse-grained proximal equivalent of the finer-grained Derrylea Formation, both being deposited in a deep-water fan environment. Previously published palaeocurrent data together with new data show the Rosroe Formation to have been derived from the northeast and therefore it cannot be the proximal equivalent of the Derrylea Formation. Additionally, the two formations show different and distinct associations of heavy mineral assemblages. It is suggested that one explanation for these data is that both formations were deposited in separate sub-basins controlled by oblique slip sinistral faults, similar in some respects to the Cenozoic basins of the Gulf of California. In the Irish case these faults would have been largely buried by later Ordovician sedimentation. Some models for the Ordovician evolution of this area postulate the presence of an initial oceanic arc situated above a southward directed subduction zone. The presence of thick proximal submarine tuffs derived from an arc environment in the Rosroe Formation suggest that at least by this time the subduction zone was in fact northward directed and outboard of the arc. Copyright © 2002 John Wiley & Sons, Ltd. [source] Guided waves at subduction zones: dependencies on slab geometry, receiver locations and earthquake sourcesGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2006S. Martin SUMMARY We investigate the geometry of deep subduction zone waveguides (depth >100 km). The wavefield characteristics for up-dip profiles are described and compared with data recorded at the Chile,Peru subduction zone. Observed distorted P onsets at stations in northern Chile near 21°S can be matched by 2-D finite difference simulations of a thin low-velocity layer (LVL) atop the slab in an IASP91 velocity model. The replacement of the LVL by simple random velocity undulations in the slab in the same model cannot explain the observations. Varying slab geometries are investigated and the distribution of guided wave onsets originating in deep waveguides is predicted relative to the slab surface. Further, double couple source position and orientation is explored and found to be closely limited by the guided wave observations. Sources situated above the layer and at distances more than 2 layer widths below the subducted Moho are not suitable. For the remaining favourable source locations, a strong link between pulse shapes and fault plane dip angle is evident. We conclude that up-dip guided wave observations at subduction zones follow a simple pattern given by slab geometry and modified by source position. The resulting onsets are shaped by layer thickness and velocity contrast and further influenced by the shape of the slab surface. [source] A practical grid-based method for tracking multiple refraction and reflection phases in three-dimensional heterogeneous mediaGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2006M. De Kool SUMMARY We present a practical grid-based method in 3-D spherical coordinates for computing multiple phases comprising any number of reflection and transmission branches in heterogeneous layered media. The new scheme is based on a multistage approach which treats each layer that the wave front enters as a separate computational domain. A finite-difference eikonal solver known as the fast-marching method (FMM) is reinitialized at each interface to track the evolving wave front as either a reflection back into the incident layer or a transmission through to the adjacent layer. Unlike the standard FMM, which only finds first arrivals, this multistage approach can track those later arriving phases explicitly caused by the presence of discontinuities. Notably, the method does not require an irregular mesh to be constructed in order to connect interface nodes to neighbouring velocity nodes which lie on a regular grid. To improve accuracy, local grid refinement is used in the neighbourhood of a source point where wave front curvature is high. The method also provides a way to trace reflections from an interface that are not the first arrival (e.g. the global PP phase). These are computed by initializing the multistage FMM from both the source and receiver, propagating the two wave fronts to the reflecting interface, and finding stationary points of the sum of the two traveltime fields on the reflecting interface. A series of examples are presented to test the efficiency, accuracy and robustness of the new scheme. As well as efficiently computing various global phases to an acceptable accuracy through the ak135 model, we also demonstrate the ability of the scheme to track complex crustal phases that may be encountered in coincident reflection, wide-angle reflection/refraction or local earthquake surveys. In one example, a variety of phases are computed in the presence of a realistic subduction zone, which includes several layer pinch-outs and a subducting slab. Our numerical tests show that the new scheme is a practical and robust alternative to conventional ray tracing for finding various phases in layered media at a variety of scales. [source] A preliminary study of crustal structure in Taiwan region using receiver function analysisGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2004Kwang-Hee Kim SUMMARY Selected teleseismic data observed at temporary and permanent broad-band stations have been analysed using the receiver function method in order to investigate the very complex crustal structure in Taiwan region. Very significant azimuthal variations of radial and transverse receiver function responses from broad-band stations could be attributed to, among other things, the sampling of incoming seismic waves across the nearby subduction zone, a subsurface dipping interface, or a localized anisotropic region. A mid-crust discontinuity, interpreted as the Conrad discontinuity, can be identified at 18,20 km depth beneath TATO and TPUB stations in the Western Foothills, but is absent beneath the two nearby stations SSLB and TDCB in the Central Mountain Range. The separation of upper and lower crust beneath the Western Foothills and the steady increase in crustal velocity as a function of depth across the entire thicker crust beneath the Central Mountain Range suggest that the tectonic evolution of the crust may be significantly different for these two adjacent regions. Although a ,thin-skinned' model may be associated with the tectonic evolution of the upper crust of the Western Foothills and Western Coastal Plain, a ,thick-skinned' or ,lithospheric deformation' model can probably be applied to explain the crustal evolution of the Central Mountain Range. A trend of crustal thinning from east (50,52 km) to west (28,32 km) is in very good agreement with the results from two east,west-trending deep seismic profiles obtained using airgun sources. The thinner crust (20,30 km) beneath TWB1 station in northeastern Taiwan can be associated with the high-heat-flow backarc opening at the western terminus of the Okinawa trough behind the subduction of the Philippine Sea plate. The relatively simple crustal structure beneath KMNB station, offshore southeastern China, depicts typical continental crust, with the Moho depth at 28,32 km. An apparent offset of the thickest Moho beneath NACB station from the topographic high in the central Central Mountain Range suggests that the Taiwan orogeny has probably not reached its isostatic status. [source] Strike-slip earthquakes in the oceanic lithosphere: observations of exceptionally high apparent stressGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2002George L. Choy Summary The radiated energies, ES, and seismic moments, M0, for 942 globally distributed earthquakes that occurred between 1987 to 1998 are examined to find the earthquakes with the highest apparent stresses (,a=,ES/M0, where , is the modulus of rigidity). The globally averaged ,a for shallow earthquakes in all tectonic environments and seismic regions is 0.3 MPa. However, the subset of 49 earthquakes with the highest apparent stresses (,a greater than about 5.0 MPa) is dominated almost exclusively by strike-slip earthquakes that occur in oceanic environments. These earthquakes are all located in the depth range 7,29 km in the upper mantle of the young oceanic lithosphere. Many of these events occur near plate-boundary triple junctions where there appear to be high rates of intraplate deformation. Indeed, the small rapidly deforming Gorda Plate accounts for 10 of the 49 high- ,a events. The depth distribution of ,a, which shows peak values somewhat greater than 25 MPa in the depth range 20,25 km, suggests that upper bounds on this parameter are a result of the strength of the oceanic lithosphere. A recently proposed envelope for apparent stress, derived by taking 6 per cent of the strength inferred from laboratory experiments for young (less than 30 Ma) deforming oceanic lithosphere, agrees well with the upper-bound envelope of apparent stresses over the depth range 5,30 km. The corresponding depth-dependent shear strength for young oceanic lithosphere attains a peak value of about 575 MPa at a depth of 21 km and then diminishes rapidly as the depth increases. In addition to their high apparent stresses, which suggest that the strength of the young oceanic lithosphere is highest in the depth range 10,30 km, our set of high- ,a earthquakes show other features that constrain the nature of the forces that cause interplate motion. First, our set of events is divided roughly equally between intraplate and transform faulting with similar depth distributions of ,a for the two types. Secondly, many of the intraplate events have focal mechanisms with the T -axes that are normal to the nearest ridge crest or subduction zone and P -axes that are normal to the proximate transform fault. These observations suggest that forces associated with the reorganization of plate boundaries play an important role in causing high- ,a earthquakes inside oceanic plates. Extant transform boundaries may be misaligned with current plate motion. To accommodate current plate motion, the pre-existing plate boundaries would have to be subjected to large horizontal transform push forces. A notable example of this is the triple junction near which the second large aftershock of the 1992 April Cape Mendocino, California, sequence occurred. Alternatively, subduction zone resistance may be enhanced by the collision of a buoyant lithosphere, a process that also markedly increases the horizontal stress. A notable example of this is the Aleutian Trench near which large events occurred in the Gulf of Alaska in late 1987 and the 1998 March Balleny Sea M= 8.2 earthquake within the Antarctic Plate. [source] A reflector at 200 km depth beneath the northwest PacificGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2001S. Rost SUMMARY We present an analysis of precursors to PP produced by underside reflections from discontinuities in the upper mantle beneath the NW Pacific. The events used for this study occur in the western Pacific Rim (New Zealand, Fiji, Tonga, Solomon, New Guinea, Philippine Islands) and are recorded at the short-period Yellowknife Array (YKA) in northern Canada. The source,receiver combination results in PP reflection points which allow us to study the upper mantle structure in a corridor from the Hawaiian Islands to the Kuril subduction zone. To detect the weak precursors in the time window between the P arrival and the PP onset and to identify them as PP underside reflections, special array techniques are used. Our analysis indicates a reflector at a depth of ,200 km beneath the northwestern Pacific. This reflector shows strong topography of some tens of kilometres on length scales of several hundred kilometres, complicating the detection of this reflector in global or regional stacks of seismograms. Different models for the impedance jump across the reflector, the thickness and the possible fine structure of the reflector are modelled using synthetic seismograms and are compared with the data. The thickness of the reflector has to be less than 7 km and the P wave impedance contrast has to be larger than 5.0,6.5 per cent to be detected by this study. This corresponds to a P -velocity jump of ,4 per cent assuming the PREM density model. [source] A complex, young subduction zone imaged by three-dimensional seismic velocity, Fiordland, New ZealandGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2001Donna Eberhart-Phillips Summary The Fiordland subduction zone, where subduction developed in the late Miocene, has been imaged with P and S,P arrival-time data from 311 earthquakes in a simultaneous inversion for hypocentres and 3-D VP and VP/VS models. The three-month microearthquake survey, recorded with 24 portable seismographs, provides excellent coverage, and, since earthquakes to depths of 130 km are included, parts of the model are well-resolved to depths of 100 km. The crustal features are generally consistent with geology. The low velocity in the upper 10 km is associated with the Te Anau and Waiau basins. The Western Fiordland Orthogneiss is associated with a prominent feature from near-surface to over 40 km depth, which includes the residue from the basaltic source rocks. It is defined by high VP (7.4 km s,1 at 15 km depth) and slightly low VP/VS, and has distinct boundaries on its southern and eastern margins. Adjacent to the deepest earthquakes, there is high-velocity Pacific mantle below 80 km depth, inferred to be the mantle expression of ongoing shortening since the early Miocene. As the subducting slab moves down and northeast, it is hindered by the high-velocity body and bends to near-vertical. Bending is accommodated by distributed fracturing evidenced by high VP/VS and persistent deep earthquake activity. Buckling of the subducted plate pushes up the Western Fiordland Orthogneiss. In the transition to the Alpine fault in northern Fiordland, a prominent low-velocity crustal root is consistent with ductile thickening in combination with downwarp of the subducted plate. [source] Three-dimensional seismic structure beneath the Australasian region from refracted wave observationsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2000Y. Kaiho The earthquakes in the seismicity belt extending through Indonesia, New Guinea, Vanuatu and Fiji to the Tonga,Kermadec subduction zone recorded at the 65 portable broad-band stations deployed during the Skippy experiment from 1993,1996 provide good coverage of the lithosphere and mantle under the Australian continent, Coral Sea and Tasman Sea. The variation in structure in the upper part of the mantle is characterized by deter-mining a suite of 1-D structures from stacked record sections utilizing clear P and S arrivals, prepared for all propagation paths lying within a 10° azimuth band. The azimuth of these bands is rotated by 20° steps with four parallel corridors for each azimuth. This gives 26 separate azimuthal corridors for which 15 independent 1-D seismic velocity structures have been derived, which show significant variation in P and S structure. The set of 1-D structures is combined to produce a 3-D representation by projecting the velocity values along the ray path using a turning point approximation and stacking into 3-D cells (5° by 50 km in depth). Even though this procedure will tend to underestimate wave-speed perturbations, S -velocity deviations from the ak135 reference model exceed 6 per cent in the lithosphere. In the uppermost mantle the results display complex features and very high S -wave speeds beneath the Precambrian shields with a significant low-velocity zone beneath. High velocities are also found towards the base of the transition zone, with highS -wave speeds beneath the continent and high P -wave speeds beneath the ocean. The wave-speed patterns agree well with independent surface wave studies and delay time tomography studies in the zones of common coverage. [source] Deformation and stress change associated with plate interaction at subduction zones: a kinematic modellingGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2000Shaorong Zhao The interseismic deformation associated with plate coupling at a subduction zone is commonly simulated by the steady-slip model in which a reverse dip-slip is imposed on the down-dip extension of the locked plate interface, or by the backslip model in which a normal slip is imposed on the locked plate interface. It is found that these two models, although totally different in principle, produce similar patterns for the vertical deformation at a subduction zone. This suggests that it is almost impossible to distinguish between these two models by analysing only the interseismic vertical deformation observed at a subduction zone. The steady-slip model cannot correctly predict the horizontal deformation associated with plate coupling at a subduction zone, a fact that is proved by both the numerical modelling in this study and the GPS (Global Positioning System) observations near the Nankai trough, southwest Japan. It is therefore inadequate to simulate the effect of the plate coupling at a subduction zone by the steady-slip model. It is also revealed that the unphysical assumption inherent in the backslip model of imposing a normal slip on the locked plate interface makes it impossible to predict correctly the horizontal motion of the subducted plate and the stress change within the overthrust zone associated with the plate coupling during interseismic stages. If the analysis made in this work is proved to be correct, some of the previous studies on interpreting the interseismic deformation observed at several subduction zones based on these two models might need substantial revision. On the basis of the investigations on plate interaction at subduction zones made using the finite element method and the kinematic/mechanical conditions of the plate coupling implied by the present plate tectonics, a synthesized model is proposed to simulate the kinematic effect of the plate interaction during interseismic stages. A numerical analysis shows that the proposed model, designed to simulate the motion of a subducted slab, can correctly produce the deformation and the main pattern of stress concentration associated with plate coupling at a subduction zone. The validity of the synthesized model is examined and partially verified by analysing the horizontal deformation observed by GPS near the Nankai trough, southwest Japan. [source] Geophysical implications of Izu,Bonin mantle wedge hydration from chemical geodynamic modelingISLAND ARC, Issue 1 2010Laura B. Hebert Abstract Using two-dimensional dynamic models of the Northern Izu,Bonin (NIB) subduction zone, we show that a particular localized low-viscosity (,LV = 3.3 × 1019 , 4.0 × 1020 Pa s), low-density (,, , ,10 kg/m3 relative to ambient mantle) geometry within the wedge is required to match surface observations of topography, gravity, and geoid anomalies. The hydration structure resulting in this low-viscosity, low-density geometry develops due to fluid release into the wedge within a depth interval from 150 to 350 km and is consistent with results from coupled geochemical and geodynamic modeling of the NIB subduction system and from previous uncoupled models of the wedge beneath the Japan arcs. The source of the fluids can be either subducting lithospheric serpentinite or stable hydrous phases in the wedge such as serpentine or chlorite. On the basis of this modeling, predictions can be made as to the specific low-viscosity geometries associated with geophysical surface observables for other subduction zones based on regional subduction parameters such as subducting slab age. [source] Tectono-metamorphic history of the Tacagua ophiolitic unit (Cordillera de la Costa, northern Venezuela): Insights in the evolution of the southern margin of the Caribbean PlateISLAND ARC, Issue 1 2007Alessandro Ellero Abstract The southern margin of the Caribbean Plate is well exposed in the Cordillera de la Costa of northern Venezuela, where amalgamated terranes consisting of continental and oceanic units occur. In the Cordillera de la Costa, metamorphosed oceanic units crop out along the coast near Caracas. Among them, the Tacagua unit is characterized by metaserpentinites and metabasites showing mid-oceanic ridge basalt geochemical affinity. These lithologies, representative of a disrupted ophiolite sequence, are associated with metasediments consisting of calcschists alternating with pelitic and psammitic schists, whose protoliths were probably represented by deep-sea hemipelagic and turbiditic deposits. In the Tacagua unit, a polyphase deformation history has been reconstructed, consisting of four folding phases from D1 to D4. Geological setting suggests an involvement of the Tacagua unit in the processes connected with a subduction zone. The following deformations (from D2 to D4) observed in the field might be related to the exhumation history of the Tacagua unit. The late deformation history consists of an alternation of deformation phases characterized by displacement parallel (D2 and D4 phases) and normal (D3 phase) to plate boundary between the Caribbean and South America Plates. All lines of geological evidence suggest that the whole evolution of the Tacagua unit was acquired in a setting dominated by oblique convergence, in which alternation of strike-slip and pure compressional or pure extensional tectonics occurred through time. [source] Prograde eclogites from the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt, central Shikoku, southwest JapanISLAND ARC, Issue 3 2005Yasuo Miyagi Abstract Prograde eclogites occur in the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt of central Shikoku. The Tonaru mass is considered to be a metamorphosed layered gabbro, and occurs as a large tectonic block (approximately 6.5 km × 1 km) in a high-grade portion of the Sambagawa schists. The Tonaru mass experienced high- P/low- T prograde metamorphism from the epidote-blueschist facies to the eclogite facies prior to its emplacement into the Sambagawa schists. The estimated P,T conditions are T = 300,450°C and P = 0.7,1.1 GPa for the epidote-blueschist facies, and the peak P,T conditions for the eclogite facies are T = 700,730°C and P , 1.5 GPa. Following the eclogite facies metamorphism, the Tonaru mass was retrograded to the epidote amphibolite facies. It subsequently underwent additional prograde Sambagawa metamorphism, together with the surrounding Sambagawa schists, until the conditions of the oligoclase,biotite zone were reached. The high- P/low- T prograde metamorphism of the eclogite facies in the Tonaru mass and other tectonic blocks show similar steep dP/dT geothermal gradients despite their diverse peak P,T conditions, suggesting that these tectonic blocks reached different depths in the subduction zone. The individual rocks in each metamorphic zone of the Sambagawa schists also recorded steep dP/dT geothermal gradients during the early stages of the Sambagawa prograde metamorphism, and these gradients are similar to those of the eclogite-bearing tectonic blocks. Therefore, the eclogite-bearing tectonic blocks reached greater depths in the subduction zone than the Sambagawa schists. All the tectonic blocks were ultimately emplaced into the hanging wall side of the later-subducted Sambagawa high-grade schists during their exhumation. [source] The Cansiwang Melange of Southeast Bohol (Central Philippines): Origin and tectonic implicationsISLAND ARC, Issue 4 2000Joel V. De Jesus Abstract The Cansiwang Melange underlies the Southeast Bohol Ophiolite Complex (SEBOC) and is composed mainly of sheared ophiolite-derived blocks such as harzburgites, microgabbros, basalts and cherts in a pervasive serpentinite matrix. Available field, as well as geophysical evidence show that this melange unit is not diapiric, nor does it have a sedimentary origin considering that it lacks slump and flow structures. A tectonic origin for the Cansiwang Melange is favored in view of the numerous thrust faults, which cut across the exposures, as well as the tectonic contacts that the melange has with the overlying and underlying formations. The presence of the Cansiwang Melange in between the SEBOC and the Alicia Schist provides evidence that the amphibolite of the Alicia Schist do not correspond to the metamorphic sole of SEBOC. Similar to what is recognized in the Josephine Ophiolite, this suggests a ,cold' emplacement of the ophiolite over the Alicia Schist. The Cansiwang Melange represents an accretionary prism product which marks the location of an ancient subduction zone in what is now Central Philippines. [source] Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implicationJOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2009Z. LÜ Abstract Coesite inclusions in garnet have been found in eclogite boudins enclosed in coesite-bearing garnet micaschist in the Habutengsu Valley, Chinese western Tianshan, which are distinguished from their retrograde quartz by means of optical characteristics, CL imaging and Raman spectrum. The coesite-bearing eclogite is mainly composed of porphyroblastic garnet, omphacite, paragonite, glaucophane and barroisite, minor amounts of rutile and dotted (or banded) graphite. In addition to coesite and quartz, the zoned porphyroblastic garnet contains inclusions of omphacite, Na-Ca amphibole, calcite, albite, chlorite, rutile, ilmenite and graphite. Multi-phase inclusions (e.g. Czo + Pg ± Qtz, Grt II + Qtz and Chl + Pg) can be interpreted as breakdown products of former lawsonite and possibly chloritoid. Coesite occurs scattered within a compositionally homogenous but narrow domain of garnet (outer core), indicative of equilibrium at the UHP stage. The estimate by garnet-clinopyroxene thermometry yields peak temperatures of 420,520 °C at 2.7 GPa. Phase equilibrium calculations further constrain the P,T conditions for the UHP mineral assemblage Grt + Omp + Lws + Gln + Coe to 2.4,2.7 GPa and 470,510 °C. Modelled modal abundances of major minerals along a 5 °C km,1 geothermal gradient suggests two critical dehydration processes at ,430 and ,510 °C respectively. Computed garnet composition patterns are in good agreement with measured core-rim profiles. The petrological study of coesite-bearing eclogite in this paper provides insight into the metamorphic evolution in a cold subduction zone. Together with other reported localities of UHP rocks from the entire orogen of Chinese western Tianshan, it is concluded that the regional extent of UHP-LT metamorphism in Chinese western Tianshan is extensive and considerably larger than previously thought, although intensive retrogression has erased UHP-LT assemblages at most localities. [source] Age and early metamorphic history of the Sanbagawa belt: Lu,Hf and P,T constraints from the Western Iratsu eclogiteJOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2009S. ENDO Abstract Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c. 120,110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c. 88,89 Ma based on a garnet,omphacite Lu,Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units,all ,20 kbar and 600,650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu,Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote,amphibolite facies parageneses equilibrated at 550,650 °C and ,10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu,Hf age of c. 116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap (c. 27 Myr) between the two Lu,Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone. [source] The P,T path of the ultra-high pressure Lago Di Cignana and adjoining high-pressure meta-ophiolitic units: insights into the evolution of the subducting Tethyan slabJOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2009C. GROPPO Abstract The Lago di Cignana ultra-high-pressure unit (LCU), which consists of coesite,eclogite facies metabasics and metasediments, preserves the most deeply subducted oceanic rocks worldwide. New constraints on the prograde and early retrograde evolution of this ultra-high pressure unit and adjoining units provide important insights into the evolution of the Piemontese,Ligurian palaeo-subduction zone, active in Paleocene,Eocene times. In the LCU, a first prograde metamorphic assemblage, consisting of omphacite + Ca-amphibole + epidote + rare biotite + ilmenite, formed during burial at estimated P < 1.7 GPa and 350 < T < 480 °C. Similar metamorphic conditions of 400 < T < 650 °C and 1.0 < P < 1.7 GPa have been estimated for the meta-ophiolitic rocks juxtaposed to the LCU. The prograde assemblage is partially re-equilibrated into the peak assemblage garnet + omphacite + Na-amphibole + lawsonite + coesite + rutile, whose conditions were estimated at 590 < T < 605 °C and P > 3.2 GPa. The prograde path was characterized by a gradual decrease in the thermal gradient from ,9,10 to ,5,6 °C km,1. This variation is interpreted as the evidence of an increase in the rate of subduction of the Piemonte,Ligurian oceanic slab in the Eocene. Accretion of the Piemontese oceanic rocks to the Alpine orogen and thermal relaxation were probably related to the arrival of more buoyant continental crust at the subduction zone. Subsequent deformation of the orogenic wedge is responsible for the present position of the LCU, sandwiched between two tectonic slices of meta-ophiolites, named the Lower and Upper Units, which experienced peak pressures of 2.7,2.8 and <2.4 GPa respectively. [source] Ultrahigh-pressure metamorphism and exhumation of garnet peridotite in Pohorje, Eastern AlpsJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2006M. JANÁK Abstract New evidence for ultrahigh-pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet-bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase-peridotite or the spinel-peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low-Al orthopyroxene + clinopyroxene + Cr-spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr-spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high-Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet-olivine and garnet-orthopyroxene Fe-Mg exchange thermometers and (ii) the Al-in-orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation. [source] Distinguishing between seafloor alteration and fluid flow during subduction using stable isotope geochemistry: examples from Tethyan ophiolites in the Western AlpsJOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2000Miller Large amounts of fluid, bound up in the hydrated upper layers of the ocean crust, are consumed at convergent margins and released in subduction zones through devolatilization. The liberated fluids may play an integral role in subduction zone processes, including the generation of arc-magmas. However, exhumed subduction zone rocks often record little evidence of large-scale fluid flow, especially at deeper levels within the subduction zone. Basaltic pillows from the high-pressure Corsican and Zermatt-Saas ophiolites show a range of ,18O values that overall reflect seafloor alteration prior to subduction. However, comparison between the ,18O values of the cores and rims of the pillows suggests that the ,18O values of the pillow rims at least have been modified during subduction and high-pressure metamorphism. Pillows that have not undergone high-pressure metamorphism generally have rims with higher ,18O values than their cores, whereas the converse is the case in pillows that have undergone high-pressure metamorphism. This reversal in the core to rim oxygen isotope relationship between unmetamorphosed and metamorphosed pillows is strong evidence for fluid,rock interaction occurring during subduction and high-pressure metamorphism. However, the preservation of different ,18O values in the cores and rims of individual pillows and within and between different pillows suggests that fluid flow within the subduction zone was strongly channelled. Resetting of the ,18O values in the pillow rims was probably due to fluid-hosted diffusion that occurred over relatively short time-scales (<1 Myr). [source] A general model for the intrusion and evolution of ,mantle' garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranesJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2000Brueckner Garnet-bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high-temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60,120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ,mantle' peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ,subduction zone peridotites' intrude during the subsequent subduction of continental crust. Low-pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20,50 km) may be carried to deeper levels within the host slab and undergo high-pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet-bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50,120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (,relict peridotites') and seem to require the development of major intra-cratonic faults to effect their intrusion. [source] Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central ChinaJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2000Zhang Garnet peridotites occur as lenses, blocks or layers within granulite,amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic,ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707,0.708), low ,Nd(t) values (,6 to ,9) and low ,18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P,T estimates (760,970 °C and 4.0,6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ,180,200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km,1. [source] Fluctuations in relative sea-level during the past 3000 yr in the Onnetoh estuary, Hokkaido, northern JapanJOURNAL OF QUATERNARY SCIENCE, Issue 5-6 2002Yuki Sawai Abstract This paper presents the results of a litho-, bio- and chronostratigraphical study of the evidence for late Holocene sea-level change, palaeoseismicity and coastal evolution at the Onnetoh estuary, northwest Japan. Alternating peat and mud couplets record evidence for four falls in relative sea-level since ca. 2500 cal. yr BP. In the latest instance, intertidal mud with a salt-tolerant diatom and plant macrofossil flora is abruptly overlain by a freshwater peat containing abundant macrofossil remains of the conifer Picea glehnii. These stratigraphical changes record an abrupt change from tidal flat to upland, with no intermediate transition through saltmarsh. In the other three instances, the stratigraphy records a more gradual fall in relative sea-level, as shown by gradational stratigraphical contacts and transitional diatom and plant macrofossil assemblages. Once established, these freshwater peat communities are gradually submerged and become overlain by saltmarsh and then intertidal muds. Radiocarbon ages and tephra date the emergence events to 2700,1750 (gradual), 1350,950 (gradual), 650,300 (gradual) and ca. 400 cal. yr BP (abrupt). These ages are similar to a sequence of emergence events recorded at the Akkeshi estuary, 70 km to the west of the present study site. The three falls in relative sea-level may record coseismic, or swift post-seismic, uplift caused by plate boundary subduction earthquakes on the Kurile subduction zone. The oldest relative sea-level fall is correlated with the so-called ,Yayoi regression', dated to 1500,3000 cal yr BP in other parts of Japan. Copyright © 2002 John Wiley & Sons, Ltd. [source] Aqueous fluids at elevated pressure and temperatureGEOFLUIDS (ELECTRONIC), Issue 1-2 2010A. LIEBSCHER Abstract The general major component composition of aqueous fluids at elevated pressure and temperature conditions can be represented by H2O, different non-polar gases like CO2 and different dissolved metal halides like NaCl or CaCl2. At high pressure, the mutual solubility of H2O and silicate melts increases and also silicates may form essential components of aqueous fluids. Given the huge range of P,T,x regimes in crust and mantle, aqueous fluids at elevated pressure and temperature are highly variable in composition and exhibit specific physicochemical properties. This paper reviews principal phase relations in one- and two-component fluid systems, phase relations and properties of binary and ternary fluid systems, properties of pure H2O at elevated P,T conditions, and aqueous fluids in H2O,silicate systems at high pressure and temperature. At metamorphic conditions, even the physicochemical properties of pure water substantially differ from those at ambient conditions. Under typical mid- to lower-crustal metamorphic conditions, the density of pure H2O is , the ion product Kw = 10,7.5 to approximately 10,12.5, the dielectric constant , = 8,25, and the viscosity , = 0.0001,0.0002 Pa sec compared to , Kw = 10,14, , = 78 and , = 0.001 Pa sec at ambient conditions. Adding dissolved metal halides and non-polar gases to H2O significantly enlarges the pressure,temperature range, where different aqueous fluids may co-exist and leads to potential two-phase fluid conditions under must mid- to lower-crustal P,T conditions. As a result of the increased mutual solubility between aqueous fluids and silicate melts at high pressure, the differences between fluid and melt vanishes and the distinction between fluid and melt becomes obsolete. Both are completely miscible at pressures above the respective critical curve giving rise to so-called supercritical fluids. These supercritical fluids combine comparably low viscosity with high solute contents and are very effective metasomatising agents within the mantle wedge above subduction zones. [source] The tectonic regime along the Andes: Present-day and Mesozoic regimesGEOLOGICAL JOURNAL, Issue 1 2010Victor A. Ramos Abstract The analyses of the main parameters controlling the present Chile-type and Marianas-type tectonic settings developed along the eastern Pacific region show four different tectonic regimes: (1) a nearly neutral regime in the Oregon subduction zone; (2) major extensional regimes as the Nicaragua subduction zone developed in continental crust; (3) a Marianas setting in the Sandwich subduction zone with ocean floored back-arc basin with a unique west-dipping subduction zone and (4) the classic and dominant Chile-type under compression. The magmatic, structural and sedimentary behaviours of these four settings are discussed to understand the past tectonic regimes in the Mesozoic Andes based on their present geological and tectonic characteristics. The evaluation of the different parameters that governed the past and present tectonic regimes indicates that absolute motion of the upper plate relative to the hotspot frame and the consequent trench roll-back velocity are the first order parameters that control the deformation. Locally, the influences of the trench fill, linked to the dominant climate in the forearc, and the age of the subducted oceanic crust, have secondary roles. Ridge collisions of seismic and seismic oceanic ridges as well as fracture zone collisions have also a local outcome, and may produce an increase in coupling that reinforces compressional deformation. Local strain variations in the past and present Andes are not related with changes in the relative convergence rate, which is less important than the absolute motion relative to the Pacific hotspot frame, or changes in the thermal state of the upper plate. Changes in the slab dip, mainly those linked to steepening subduction zones, produce significant variations in the thermal state, that are important to generate extreme deformation in the foreland. Copyright © 2009 John Wiley & Sons, Ltd. [source] Subducted slabs and lateral viscosity variations: effects on the long-wavelength geoidGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2009Nicola Tosi SUMMARY The characteristic broad local maxima exhibited by the long-wavelength geoid over subduction zones are investigated with a numerical model of mantle flow. In a spherical axisymmetric geometry, a synthetic model of buoyancy driven subduction is used to test the effects on the geoid caused by the depth of penetration of the lithosphere into the mantle, by the viscosity stratification and by lateral viscosity variations (LVV) in the lithosphere, upper and lower mantle. The presence of anomalous slab density in the lower mantle guarantees geoid amplitudes comparable with the observations, favouring the picture of slabs that penetrate the transition zone and sink into the deep mantle. The viscosity of the lower mantle controls the long-wavelength geoid to the first order, ensuring a clear positive signal when it is at least 30-times greater than the upper-mantle viscosity. The presence of LVV in the lithosphere, in the form of weak plate margins, helps to increase the contribution of the surface topography, causing a pronounced reduction of the geoid. Localized LVV associated with the cold slab play a secondary role if they are in the upper mantle. On the other hand, highly viscous slabs in the lower mantle exert a large influence on the geoid. They cause its amplitude to increase dramatically, way beyond the values typically observed over subduction zones. Long-wavelength flow becomes less vigorous as the slab viscosity increases. Deformation in the upper mantle becomes more localized and power is transferred to short wavelengths, causing the long-wavelength surface topography to diminish and the total geoid to increase. Slabs may be then weakened in the lower mantle or retain their high viscosity while other mechanisms act to lower the geoid. It is shown that a phase change from perovskite to post-perovskite above the core,mantle boundary can cause the geoid to reduce significantly, thereby helping to reconcile models and observations. [source] Guided waves at subduction zones: dependencies on slab geometry, receiver locations and earthquake sourcesGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2006S. Martin SUMMARY We investigate the geometry of deep subduction zone waveguides (depth >100 km). The wavefield characteristics for up-dip profiles are described and compared with data recorded at the Chile,Peru subduction zone. Observed distorted P onsets at stations in northern Chile near 21°S can be matched by 2-D finite difference simulations of a thin low-velocity layer (LVL) atop the slab in an IASP91 velocity model. The replacement of the LVL by simple random velocity undulations in the slab in the same model cannot explain the observations. Varying slab geometries are investigated and the distribution of guided wave onsets originating in deep waveguides is predicted relative to the slab surface. Further, double couple source position and orientation is explored and found to be closely limited by the guided wave observations. Sources situated above the layer and at distances more than 2 layer widths below the subducted Moho are not suitable. For the remaining favourable source locations, a strong link between pulse shapes and fault plane dip angle is evident. We conclude that up-dip guided wave observations at subduction zones follow a simple pattern given by slab geometry and modified by source position. The resulting onsets are shaped by layer thickness and velocity contrast and further influenced by the shape of the slab surface. [source] On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faultsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2001J. Vergne Summary Creeping dislocations in an elastic half-space are commonly used to model interseismic deformation at subduction zones, and might also apply to major intracontinental thrust faults such as the Main Himalayan Thrust. Here, we compare such models with a more realistic 2-D finite element model that accounts for the mechanical layering of the continental lithosphere and surface processes, and that was found to fit all available constraints on interseismic and long-term surface displacements. These can also be fitted satisfactorily from dislocation models. The conventional back-slip model, commonly used for subduction zones, may, however, lead to a biased inference about the geometry of the locked portion of the thrust fault. We therefore favour the use of a creeping buried dislocation that simulates the ductile shear zone in the lower crust. A limitation of dislocation models is that the mechanical response of the lithosphere to the growth of the topography by bending of the elastic cores and ductile flow in the lower crust cannot be easily introduced. Fortunately these effects can be neglected because we may assume, to first order, a stationary topography. Moreover, we show that not only can dislocation models be used to adjust surface displacements but, with some caution, they can also provide a physically sound rationale to interpret interseismic microseismicity in terms of stress variations. [source] Deformation and stress change associated with plate interaction at subduction zones: a kinematic modellingGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2000Shaorong Zhao The interseismic deformation associated with plate coupling at a subduction zone is commonly simulated by the steady-slip model in which a reverse dip-slip is imposed on the down-dip extension of the locked plate interface, or by the backslip model in which a normal slip is imposed on the locked plate interface. It is found that these two models, although totally different in principle, produce similar patterns for the vertical deformation at a subduction zone. This suggests that it is almost impossible to distinguish between these two models by analysing only the interseismic vertical deformation observed at a subduction zone. The steady-slip model cannot correctly predict the horizontal deformation associated with plate coupling at a subduction zone, a fact that is proved by both the numerical modelling in this study and the GPS (Global Positioning System) observations near the Nankai trough, southwest Japan. It is therefore inadequate to simulate the effect of the plate coupling at a subduction zone by the steady-slip model. It is also revealed that the unphysical assumption inherent in the backslip model of imposing a normal slip on the locked plate interface makes it impossible to predict correctly the horizontal motion of the subducted plate and the stress change within the overthrust zone associated with the plate coupling during interseismic stages. If the analysis made in this work is proved to be correct, some of the previous studies on interpreting the interseismic deformation observed at several subduction zones based on these two models might need substantial revision. On the basis of the investigations on plate interaction at subduction zones made using the finite element method and the kinematic/mechanical conditions of the plate coupling implied by the present plate tectonics, a synthesized model is proposed to simulate the kinematic effect of the plate interaction during interseismic stages. A numerical analysis shows that the proposed model, designed to simulate the motion of a subducted slab, can correctly produce the deformation and the main pattern of stress concentration associated with plate coupling at a subduction zone. The validity of the synthesized model is examined and partially verified by analysing the horizontal deformation observed by GPS near the Nankai trough, southwest Japan. [source] Impact of global warming on ENSO variability using the coupled giss GCM/ZC modelINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2006Dr. Timothy Eichler Research Scientist Abstract This study uses a hybrid coupled model (referred to as the general-circulation model (GCM)/Zebiak/Cane (ZC) model), which consists of the Goddard Institute for Space Studies' (GISS) Atmospheric general-circulation model (AGCM) coupled to the oceanic component of the ZC intermediate model to assess the impact of global warming on El Niño behavior, with and without the influence of heat introduced from the subtropical Pacific (via subtropical cell (STC) pathway). The baseline GCM/ZC model produces El Niño variability with a two year periodicity and an amplitude of approximately half the magnitude of observed El Niño. The GCM/ZC model also produces an appropriate atmospheric global response to El Niño/southern oscillation (ENSO) as shown by composites of 500 hPa heights, sea-level pressure (SLP), 200 hPa wind, and precipitation during El Niño and La Niña periods. To evaluate the importance of global warming on ENSO variability, 2× CO2 and 4× CO2 transient simulations were done increasing the atmospheric CO2 one percent per year, then extending the runs for an additional 70 years to obtain equilibrium climates for each run. An additional set of global-warming simulations was run after including a STC parameterization generated by computing 5-year running means of the sea-surface temperature (SST) difference between a transient run and the 1× CO2 GCM/ZC run at the anticipated subduction zones (160,130°W, 20,40°N and 20,44°S, 160,130°W) and adding it to the base of the equatorial mixed-layer of the ZC model with a time lag of 15 years. This effectively alters the vertical temperature gradient of the ZC model, which affects SST via upwelling. Two features of the GCM/ZC response to global warming are emphasized. Firstly, the inclusion of the STC results in a major redistribution of heat across the equatorial Pacific, leading to an El Niño-like response in the final equilibrium solution with less variability about the mean. The global warming aspect due to the El Niño-like response results in a positive feedback on global warming, which causes a higher global surface-air temperature (SAT) than identical transient simulations without inclusion of the STC. Secondly, including the STC effect produces a far greater magnitude of global ENSO-like impact because of the reduction of, or even the reversal of, the equatorial Pacific longitudinal SST gradient. The implications of such an extreme climate scenario are discussed. Copyright © 2006 Royal Meteorological Society [source] |