Home About us Contact | |||
Subcommissural Organ (subcommissural + organ)
Selected AbstractsReissner's Fibre Proteins and p73 Variations in the Cerebrospinal Fluid and Subcommissural Organ of Hydrocephalic RatANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 4 2009E. M. Carmona-Calero Summary Reissner's fibre (RF) is formed by the polymerization of the glycoprotein secreted by the subcommissural organ (SCO). The SCO also secretes soluble glycoprotein into the cerebrospinal fluid (CSF); variations in RF and SCO have been reported in hydrocephalus. On the other hand, hydrocephalus and other brain alterations have been described in p73 mutant mice. The p73 belongs to the tumour suppressor p53 protein family and has two isoforms: the TAp73 with apoptotic activity and ,Np73 with anti-apoptotic function. Moreover, the TAp73 isoform is glycosylated and secreted into the CSF. In the present work, we analysed the variations in RF and p73 proteins in the CSF and SCO of spontaneously hydrocephalic rats. Brains from control rats and spontaneously hydrocephalic rats of 12 months of age were used. The SCO sections were immunohistochemically processed with anti-TAp73 and anti-Reissner fibre (AFRU). The spontaneous hydrocephalus presents a decrease in the AFRU immunoreactive material in the SCO and an absence of RF. The anti-TAp73 was also present, slightly decreased, in the hydrocephalic SCO. AFRU and p73 bands were also detected in the CSF by western blot and six AFRU and p73 protein bands of a similar molecular weight were found in the CSF of the control rats. The number of AFRU and p73 bands was lower in the hydrocephalic rats than in the control rats. In conclusion, hydrocephalus produces a decrease in the secretions of the SCO and an absence of RF and a decrease in p73 and RF proteins in the CSF. [source] Polarized expression of integrin ,1 in diencephalic roof plate during chick development, a possible receptor for SCO-spondinDEVELOPMENTAL DYNAMICS, Issue 10 2009Teresa Caprile Abstract The roof plate of the caudal diencephalon is formed by the posterior commissure (PC) and the underlying secretory ependyma, the subcommissural organ (SCO). The SCO is composed by radial glial cells bearing processes that cross the PC and attach to the meningeal basement membrane. Since early development, the SCO synthesizes SCO-spondin, a glycoprotein that shares similarities to axonal guidance proteins. In vitro, SCO-spondin promotes neuritic outgrowth through a mechanism mediated by integrin ,1. However, the secretion of SCO-spondin toward the extracellular matrix that surrounds the PC axons and the expression of integrins throughout PC development have not been addressed. Here we provide immunohistochemical evidence to suggest that during chick development SCO cells secrete SCO-spondin through their basal domain, where it is deposited into the extracellular matrix in close contact with axons of the PC that express integrin ,1. Our results suggest that SCO-spondin has a role in the development of the PC through its interaction with integrin ,1. Developmental Dynamics 238:2494,2504, 2009. © 2009 Wiley-Liss, Inc. [source] Regulatory factor X4 variant 3: A transcription factor involved in brain development and disease,JOURNAL OF NEUROSCIENCE RESEARCH, Issue 16 2007Donghui Zhang Abstract Regulatory factor X4 variant 3 (RFX4_v3) is a recently identified transcription factor specifically expressed in the brain. Gene disruption in mice demonstrated that interruption of a single allele (heterozygous, +/,) prevented formation of the subcommissural organ (SCO), resulting in congenital hydrocephalus, whereas interruption of two alleles (homozygous, ,/,) caused fatal failure of dorsal midline brain structure formation. These mutagenesis studies implicated RFX4_v3 in early brain development as well as the genesis of the SCO. Rfx4_v3 deficiency presumably causes abnormalities in brain by altering the expression levels of many genes that are crucial for brain morphogenesis, such as the signaling components in the Wnt, bone morphogenetic protein, and retinoic acid pathways. RFX4_v3 might affect these critical signaling pathways in brain development. Cx3cl1, a chemokine gene highly expressed in brain, was identified as a direct target for RFX4_v3, indicating that RFX4_v3 possesses trans -acting activity to stimulate gene expression. Rfx4_v3 is highly expressed in the suprachiasmatic nucleus and might be involved in regulating the circadian clock. One haplotype in RFX4_v3 gene is linked to a higher risk of bipolar disorder, suggesting that this protein might contribute to the pathogenesis of the disease. This Mini-Review describes our current knowledge about RFX4_v3, an important protein that appears to be involved in many aspects of brain development and disease. © 2007 Wiley-Liss, Inc. [source] Reissner's Fibre Proteins and p73 Variations in the Cerebrospinal Fluid and Subcommissural Organ of Hydrocephalic RatANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 4 2009E. M. Carmona-Calero Summary Reissner's fibre (RF) is formed by the polymerization of the glycoprotein secreted by the subcommissural organ (SCO). The SCO also secretes soluble glycoprotein into the cerebrospinal fluid (CSF); variations in RF and SCO have been reported in hydrocephalus. On the other hand, hydrocephalus and other brain alterations have been described in p73 mutant mice. The p73 belongs to the tumour suppressor p53 protein family and has two isoforms: the TAp73 with apoptotic activity and ,Np73 with anti-apoptotic function. Moreover, the TAp73 isoform is glycosylated and secreted into the CSF. In the present work, we analysed the variations in RF and p73 proteins in the CSF and SCO of spontaneously hydrocephalic rats. Brains from control rats and spontaneously hydrocephalic rats of 12 months of age were used. The SCO sections were immunohistochemically processed with anti-TAp73 and anti-Reissner fibre (AFRU). The spontaneous hydrocephalus presents a decrease in the AFRU immunoreactive material in the SCO and an absence of RF. The anti-TAp73 was also present, slightly decreased, in the hydrocephalic SCO. AFRU and p73 bands were also detected in the CSF by western blot and six AFRU and p73 protein bands of a similar molecular weight were found in the CSF of the control rats. The number of AFRU and p73 bands was lower in the hydrocephalic rats than in the control rats. In conclusion, hydrocephalus produces a decrease in the secretions of the SCO and an absence of RF and a decrease in p73 and RF proteins in the CSF. [source] |