Home About us Contact | |||
Suprachiasmatic Nucleus (suprachiasmatic + nucleus)
Kinds of Suprachiasmatic Nucleus Selected AbstractsPhotic Regulation of mt1 Melatonin Receptors in the Siberian Hamster Pars Tuberalis and Suprachiasmatic Nuclei: Involvement of the Circadian Clock and Intergeniculate LeafletJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2000Schuster In the Siberian hamster suprachiasmatic nuclei and pars tuberalis of the pituitary, high affinity mt1 melatonin receptors are present. We have previously shown that night applied light pulse induced an increase in mt1 mRNA expression in the suprachiasmatic nuclei of this species, independently of the endogenous melatonin. Here, we report the photic regulation of melatonin receptor density and mRNA expression in the suprachiasmatic nuclei and pars tuberalis of pinealectomized Siberian hamsters and the implication in this control of either the circadian clock or the intergeniculate leaflet. The results show that: (1) A 1-h light pulse, delivered during the night, induces a transitory increase in mt1 mRNA expression in the suprachiasmatic nuclei and pars tuberalis. After 3 h this increase has totally disappeared (suprachiasmatic nuclei) or is greatly reduced (pars tuberalis). (2) The melatonin receptor density, in the suprachiasmatic nuclei, is not affected by 1 or 3 h of light, while it is strongly increased in the pars tuberalis. (3) In hamsters kept in constant darkness, the mt1 mRNA rise is gated to the subjective night in the suprachiasmatic nuclei and pars tuberalis. In contrast, the light-induced increase in melatonin binding is also observed in the subjective day in the pars tuberalis. (4) intergeniculate leaflet lesion totally inhibits the mt1 mRNA expression rise in the suprachiasmatic nuclei, while it has no effect on the light-induced increase in mt1 mRNA in the pars tuberalis. However, the light-induced increase in melatonin receptor density is totally prevented by the intergeniculate leaflet lesion in the pars tuberalis. These results show that: (1) the photic regulations of mt1 mRNA expression and receptor density are independent of each other in both the suprachiasmatic nuclei and pars tuberalis; and (2) the circadian clock and the intergeniculate leaflet are implicated in the photic regulation of melatonin receptors but their level of action differs totally between the suprachiasmatic nuclei and pars tuberalis. [source] Ageing and the Diurnal Expression of the mRNAs for Vasopressin and for the V1a and V1b Vasopressin Receptors in the Suprachiasmatic Nucleus of Male RatsJOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2004T. Kalamatianos Abstract Changes in the function of neuropeptide synthesizing cells within the suprachiasmatic nucleus (SCN), the site of the predominant circadian pacemaker, may underlie the disturbance of rhythms observed during ageing. Arginine vasopressin (AVP) is synthesized by nearly one-third of SCN neurones in the rat. This peptide has predominantly excitatory actions within the SCN mediated by V1 -type receptors; the extent to which the V1a and/or V1b receptor subtypes are involved in SCN functions remains to be determined. The present study used isotopic in situ hybridization histochemistry to examine the effects of ageing on expression of mRNAs for AVP and V1a in the SCN and for V1b in the SCN and supraoptic nucleus (SON) of male rats kept under a 12 : 12 h light/dark cycle. Analysis of film autoradiographs from young adult (2,3-month-old; n = 40) or aged (19,20-month-old; n = 40) animals, at eight time points across the light/dark cycle, revealed an equivalent pattern and amplitude for the diurnal rhythm of AVP mRNA in the SCN of the young adult and aged groups. Both groups also displayed a significant diurnal rhythm in the expression of V1a receptor mRNA; however, the amplitude of this rhythm was reduced in the aged group, due to increased levels during the light phase and early part of night. Although the expression of V1b mRNA did not display a significant diurnal rhythm within the SCN or SON, persistently elevated levels for V1b mRNA were observed in the aged group at both sites. [source] Effects of Circadian Regulation and Rest,Activity State on Spontaneous Seizures in a Rat Model of Limbic EpilepsyEPILEPSIA, Issue 5 2000Mark Quigg Summary: Purpose: Circadian regulation via the suprachiasmatic nuclei and rest,activity state may influence expression of limbic seizures. Methods: Male rats (n = 14) were made epileptic by electrical stimulation of the hippocampus, causing limbic status epilepticus and subsequent seizures. We monitored seizures with intrahippocampal electrodes in 12,12-h light/dark (LD) cycles and in continuous dark (DD). We used radiotelemetry monitoring of activity to measure state and body temperature to determine circadian phase. Cosinor analysis and ,2 tests determined whether seizures occurred rhythmically when plotted by phase. State was defined as inactive or active in 10-min epochs based on whether activity count was below or above a cut-off value validated from video observation. Results: In LD, the peak seizure occurrence was 14:59 h after circadian temperature peak (95% confidence limit, 13:37,16:19). Phasic seizure occurrence persisted in DD for 14:05 (12:31,15:38), p < 0.0001, against uniform mean distribution. In LD, 14,787 epochs contained 1,268 seizures; seizures preferentially occurred during inactive epochs (965 observed, 878 expected in proportion to the overall distribution of inactive versus active epochs; p < 0.001). In DD, 20,664 epochs contained 1,609 seizures; seizures had no preferential occurrence by state (999 observed, 1,025 expected; p = 0.16). Conclusions: Limbic seizures occurred with an endogenous circadian rhythm. Seizures preferentially struck during inactivity during entrainment to the light,dark cycle. [source] Lesion studies targeting food-anticipatory activityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2009Alec J. Davidson Abstract Behavior ablation remains a powerful, if not cutting-edge, approach for localization of function within the nervous system. The initial discovery of the suprachiasmatic nuclei as the site of the mammalian light-entrainable circadian pacemaker is owed to this approach. Food-anticipatory activity (FAA), an output of a putative feeding-entrainable circadian pacemaker, is a behavior that has been surprisingly resilient to elimination by surgical lesion. Here we review this literature, with particular attention paid to recent studies aimed at defining the role of the dorsomedial hypothalamus in the generation of FAA. This literature is fraught with examples of inconsistent results among lesion studies, which in some cases can be accounted for by varied endpoint measures. The site of the feeding-entrainable circadian pacemaker, if it resides in a discrete structure at all, remains unknown. [source] Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clockEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2006Ilia N. Karatsoreos Abstract In mammals, circadian rhythms are generated by the suprachiasmatic nuclei (SCN) of the hypothalamus. SCN neurons are heterogeneous and can be classified according to their function, anatomical connections, morphology and/or peptidergic identity. We focus here on gastrin-releasing peptide- (GRP) and on GRP receptor- (GRPr) expressing cells of the SCN. Pharmacological application of GRP in vivo or in vitro can shift the phase of circadian rhythms, and GRPr-deficient mice show blunted photic phase shifting. Given the in vivo and in vitro effects of GRP on circadian behavior and on SCN neuronal activity, we investigated whether the GRPr might be under circadian and/or diurnal control. Using in situ hybridization and autoradiographic receptor binding, we localized the GRPr in the mouse SCN and determined that GRP binding varies with time of day in animals housed in a light,dark cycle but not in conditions of constant darkness. The latter results were confirmed with Western blots of SCN tissue. Together, the present findings reveal that changes in GRPr are light driven and not endogenously organized. Diurnal variation in GRPr activity probably underlies intra-SCN signaling important for entrainment and phase shifting. [source] Nerve growth factor-induced circadian phase shifts and MAP kinase activation in the hamster suprachiasmatic nucleiEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005Gastón A. Pizzio Abstract Circadian rhythms are entrained by light and by several neurochemical stimuli. In hamsters housed in constant darkness, i.c.v. administration of nerve growth factor (NGF) at various times in their circadian cycle produced phase shifts of locomotor activity rhythms that were similar in direction and circadian timing to those produced by brief pulses of light. Moreover, the effect of NGF and light were not additive, indicating signalling points in common. These points include the immediate-early gene c-fos and ERK1/2, a component of the mitogen-activated protein kinases (MAPK) family. NGF activates c-FOS and ERK1/2-MAPK in the suprachiasmatic nuclei, the site of a circadian clock in mammals, when administered during the subjective night but not during the day. The effect of NGF on ERK1/2 activation was not inhibited by the administration of MK-801, a glutamate/NMDA receptor antagonist. These results suggest that NGF, acting through MAPK activation, plays a role in photic entrainment of the mammalian circadian clock. [source] Blockade of the NPY Y5 receptor potentiates circadian responses to light: complementary in vivo and in vitro studiesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2004P. C. Yannielli Abstract Neuropeptide Y (NPY) is delivered to the suprachiasmatic nuclei (SCN) circadian pacemaker via an input from the thalamic intergeniculate leaflet. NPY can inhibit light-induced responses of the circadian system of Syrian hamsters. Here we studied whether an antagonist to NPY receptors can be used to potentiate photic phase shifts late in the subjective night. First we determined by in situ hybridization that both NPY Y1 and Y5 receptor mRNA are expressed in the SCN of Syrian hamsters. Second, similar to our previous findings at Zeitgeber time 14 (ZT 14, where ZT 12 was the time of lights off), we found that NPY applied at ZT 18.5 onto the SCN region of brain slices maintained in vitro could block NMDA-induced phase advances of the spontaneous firing rate rhythm, and this blocking effect was probably mediated by the Y5 receptor, since co-application of Y5 receptor antagonists completely reversed the effect of NPY, while application of a Y1 receptor antagonist had no effect under the same conditions. Third, we found that co-treatment with a Y5 receptor antagonist in vivo (s.c., 10 mg/kg) not only reversed the effect of NPY applied to the SCN in vivo through a cannula but also significantly potentiated the light-induced phase advance in the absence of NPY. This is the first report of a NPY receptor antagonist having such an effect, and indicates that NPY Y5 receptor antagonists could be clinically useful for potentiating circadian system responses to light. [source] Resetting the brain clock: time course and localization of mPER1 and mPER2 protein expression in suprachiasmatic nuclei during phase shiftsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2004Lily Yan Abstract The mechanism whereby brief light pulses reset the mammalian circadian clock involves acute Per gene induction. In a previous study we investigated light-induced expression of mPer1 and mPer2 mRNA in the suprachiasmatic nuclei (SCN), with the aim of understanding the relationship between gene expression and behavioural phase shifts. In the present study, we examine the protein products of mPer1 and mPer2 genes in the core and shell region of SCN for 34 h following a phase-shifting light pulse, in order to further explore the molecular mechanism of photic entrainment. The results indicate that, during the delay zone of the phase response curve, while endogenous levels of mPER1 and mPER2 protein are falling, a light pulse produces an increase in the expression of both proteins. In contrast, during the advance zone of the phase response curve, while levels of endogenous mPER1 and mPER2 proteins are rising, a light pulse results in a further increase in mPER1 but not mPER2 protein. The regional distribution of mPER1 and mPER2 protein in the SCN follows the same pattern as their respective mRNAs, with mPER1 expression in the shell region of SCN correlated with phase advances and mPER2 in the shell region correlated with phase delays. [source] A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003V. M. King Abstract A mouse bearing a novel transgene encoding the human VPAC2 receptor (hVIPR; Shen et al. (2000) PNAS, 97, 11575,11580) was used to investigate circadian function in the hypothalamic suprachiasmatic nuclei (SCN). Neurons expressing hVPAC2R, detected by a beta-galactosidase (,-GAL) tag, have a distinct distribution within the SCN, closely matching that of neurophysin (NP) neurons and extending into the region of peptide histidine isoleucine (PHI) cells. In common with NP and PHI cells, neurons expressing hVPAC2R are circadian in nature, as revealed by synchronous rhythmic expression of mPERIOD (mPER) proteins. A population of SCN cells not expressing PHI, NP or hVPAC2R exhibited circadian PER expression antiphasic with the rest of the SCN. Nocturnal light exposure induced mPER1 in the ventral SCN and mPER2 widely across the nucleus. Induction of nuclear mPER2 in hVPAC2R cells confirmed their photic responsiveness. Having established their circadian properties, we tested the utility of SCN neurons expressing the hVIPR transgene as functionally and anatomically explicit markers for SCN tissue grafts. Prenatal SCN tissue from hVIPR transgenic pups survived transplantation into adult CD1 mice, and expressed ,-GAL, PER and PHI. Over a series of studies, hVIPR transgenic SCN grafts restored circadian activity rhythms to 17 of 72 arrhythmic SCN lesioned recipients (23.6%). By using heterozygous hVIPR transgenic grafts on a heterozygous Clock mutant background we confirmed that restored activity rhythms were conferred by the donor tissue. We conclude that the hVIPR transgene is a powerful and flexible tool for examination of circadian function in the mouse SCN. [source] The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003David J. Cutler Abstract Expression of coherent and rhythmic circadian (, 24 h) variation of behaviour, metabolism and other physiological processes in mammals is governed by a dominant biological clock located in the hypothalamic suprachiasmatic nuclei (SCN). Photic entrainment of the SCN circadian clock is mediated, in part, by vasoactive intestinal polypeptide (VIP) acting through the VPAC2 receptor. Here we used mice lacking the VPAC2 receptor (Vipr2,/,) to examine the contribution of this receptor to the electrophysiological actions of VIP on SCN neurons, and to the generation of SCN electrical firing rate rhythms SCN in vitro. Compared with wild-type controls, fewer SCN cells from Vipr2,/, mice responded to VIP and the VPAC2 receptor-selective agonist Ro 25-1553. By contrast, similar proportions of Vipr2,/, and wild-type SCN cells responded to gastrin-releasing peptide, arginine vasopressin or N -methyl- d -aspartate. Moreover, VIP-evoked responses from control SCN neurons were attenuated by the selective VPAC2 receptor antagonist PG 99-465. In firing rate rhythm experiments, the midday peak in activity observed in control SCN cells was lost in Vipr2,/, mice. The loss of electrical activity rhythm in Vipr2,/, mice was mimicked in control SCN slices by chronic treatment with PG 99-465. These results demonstrate that the VPAC2 receptor is necessary for the major part of the electrophysiological actions of VIP on SCN cells in vitro, and is of fundamental importance for the rhythmic and coherent expression of circadian rhythms governed by the SCN clock. These findings suggest a novel role of VPAC2 receptor signalling, and of cell-to-cell communication in general, in the maintenance of core clock function in mammals, impacting on the cellular physiology of SCN neurons. [source] Spatial and temporal variation of passer Per2 gene expression in two distinct cell groups of the suprachiasmatic hypothalamus in the house sparrow (Passer domesticus)EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2002Ute Abraham Abstract In mammals, the major pacemaker controlling circadian rhythmicity is located in the hypothalamic suprachiasmatic nuclei. Although there is evidence for the presence of a hypothalamic circadian oscillator in birds from lesioning studies, neuroanatomical, neurochemical and functional investigations have failed to identify its exact location. Two cell groups in the avian hypothalamus have been shown to bear characteristics of the mammalian suprachiasmatic nucleus: the suprachiasmatic nucleus and the lateral hypothalamic retinorecipient nucleus. We cloned an avian period homologue (pPer2) and investigated the temporal and spatial expression pattern of this gene in the house sparrow hypothalamus using in situ hybridization. Applying quantitative morphometry, we found rhythmic expression of pPer2 during light,dark as well as in constant conditions in the suprachiasmatic nucleus and in the lateral hypothalamus. The temporal and spatial distribution of pPer2 expression in the suprachiasmatic nucleus suggest a longitudinal compartmentalization of the nucleus with period gene expression being initiated in the most rostral portion of the suprachiasmatic nucleus before lights on. In the lateral hypothalamus, phasing of pPer2 -rhythmicity appeared different from the suprachiasmatic nucleus. The major difference between light,dark and constant conditions was a decrease in the amplitude of pPer2 rhythmicity in the suprachiasmatic nucleus. Our data demonstrate that, unlike in mammals, Per gene expression in the suprachiasmatic hypothalamus of the house sparrow is not confined to a single cell group, indicating a more complex organization of the circadian oscillator in the hypothalamus of birds. [source] Dopaminergic signalling in the rodent neonatal suprachiasmatic nucleus identifies a role for protein kinase A and mitogen-activated protein kinase in circadian entrainmentEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002Irina L. Schurov Abstract The circadian clock of the suprachiasmatic nuclei (SCN) of perinatal rodents is entrained by maternally derived cues. The SCN of neonatal Syrian hamsters express high-affinity D1 dopamine receptors, and the circadian activity,rest cycle of pups can be entrained by maternal injection of dopaminergic agonists. The present study sought to characterize the intracellular pathways mediating dopaminergic signalling in neonatal rodent SCN. Both dopamine and the D1 agonist SKF81297 caused a dose-dependent increase in phosphorylation of the transcriptional regulator Ca2+/cyclic AMP response element (CRE) binding protein (CREB) in suprachiasmatic GABA-immunoreactive (-IR) neurons held in primary culture. The D1 antagonist SCH23390 blocked this effect. Dopaminergic induction of pCREB-IR in GABA-IR neurons was also blocked by a protein kinase A (PKA) inhibitor, 5,24, and by the MAPK inhibitor, PD98059, whereas KN-62, an inhibitor of Ca2+/calmodulin-dependent (CAM) kinase II/IV was ineffective. Treatment with NMDA increased the level of intracellular Ca2+ in the cultured primary SCN neurons in Mg2+ -free medium, but SKF81297 did not. Blockade of CaM kinase II/IV with KN-62 inhibited glutamatergic induction of pCREB-IR in GABA-IR neurons, whereas 5,24 was ineffective, confirming the independent action of Ca2+ - and cAMP-mediated inputs on pCREB. SKF81297 caused an increase in pERK-IR in SCN cells, and this was blocked by 5,24, indicative of activation of MAPK via D1/cAMP. These results demonstrate that dopaminergic signalling in the neonatal SCN is mediated via the D1-dependent activation of PKA and MAPK, and that this is independent of the glutamatergic regulation via Ca2+ and CaM kinase II/IV responsible for entrainment to the light/dark cycle. [source] Opposing actions of neuropeptide Y and light on the expression of circadian clock genes in the mouse suprachiasmatic nucleiEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2002Elizabeth S. Maywood Abstract The circadian clockwork of the hypothalamic suprachiasmatic nuclei (SCN) is synchronized by light and by nonphotic cues. The core timing mechanism is cell-autonomous, based on an autoregulatory transcriptional/translational feedback loop of circadian genes and their products. This study investigated the effects of neuropeptide Y (NPY), a potent nonphotic resetting cue, and its interaction with light in regulating clock gene expression in the SCN in vivo. Injection of NPY adjacent to the SCN and transfer to darkness 7 h before scheduled lights out, shifted the circadian activity,rest cycle. Exposure to light for 1 h immediately after NPY infusion blocked this behavioural response. NPY-induced shifts were accompanied by suppression of both mPer1 and mPer2 mRNA in the SCN, assessed 3 h after infusion. mPer mRNAs were not altered 1 h after infusion. Levels of mClock mRNA or mCLOCK immunoreactivity in the SCN were not affected by NPY at either time point. In parallel to the behavioural response, the NPY-induced suppression of mPer genes in the SCN was attenuated when a light pulse was delivered immediately after the infusion. These results identify mPer1 and mPer2 as molecular targets for both photic and nonphotic (NPY-induced) resetting of the clockwork, and support a synthetic model of circadian entrainment based upon convergent up- and downregulation of mPer expression. [source] Circadian variations of prostaglandin E2 and F2 , release in the golden hamster retinaJOURNAL OF NEUROCHEMISTRY, Issue 4 2010Nuria De Zavalía J. Neurochem. (2009) 112, 972,979. Abstract Circadian variations of prostaglandin E2 and F2, release were examined in the golden hamster retina. Both parameters showed significant diurnal variations with maximal values at midnight. When hamsters were placed under constant darkness for 48 h, the differences in prostaglandin release between subjective mid-day and subjective midnight persisted. Western blot analysis showed that cyclooxygenase (COX)-1 levels were significantly higher at midnight than at mid-day, and at subjective midnight than at subjective mid-day, whereas no changes in COX-2 levels were observed among these time points. Immunohistochemical studies indicated the presence of COX-1 and COX-2 in the inner (but not outer) retina. Circadian variations of retinal prostaglandin release were also assessed in suprachiasmatic nuclei (SCN)-lesioned animals. Significant differences in retinal prostaglandin release between subjective mid-day and subjective midnight were observed in SCN-lesioned animals. These results indicate that hamster retinal prostaglandin release is regulated by a retinal circadian clock independent from the SCN. Thus, the present results suggest that the prostaglandin/COX-1 system could be a retinal clock output or part of the retinal clock mechanism. [source] Vasoactive Intestinal Polypeptide Contacts on Gonadotropin-Releasing Hormone Neurones Increase Following Puberty in Female RatsJOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2002L. J. Kriegsfeld Abstract Successful reproduction requires precise temporal coordination among various endocrine and behavioural events. The circadian system regulates daily temporal organization in behaviour and physiology, including neuroendocrine rhythms. The main circadian pacemaker in mammals is located in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN sends direct efferents to the reproductive axis via monosynaptic projections to gonadotropin-releasing hormone (GnRH) neurones. This communication generates circadian endocrine rhythms as well as the preovulatory luteinizing hormone (LH) surge necessary for successful ovulation. One SCN peptide thought to be important for the regulation of oestrous cycles is vasoactive intestinal polypeptide (VIP). VIP neurones from the SCN contact GnRH cells, and these cells are preferentially activated during an LH surge in rats. Unlike adult rats, prepubertal females do not exhibit oestrous cycles, nor do they exhibit an LH surge in response to oestradiol positive-feedback. The present study was undertaken to determine the extent to which the development of a ,mature' reproductive axis in female rats is associated with modifications in VIP contacts on GnRH neurones. The brains of diestrus adult (approximately 60 days of age) and prepubertal (21 days of age) female rats were examined using double-label fluorescence immunohistochemistry for VIP and GnRH, with light and confocal microscopy. Although the total number of GnRH-immunoreactive neurones did not differ between adult and prepubertal females, adults had a significant increase in the percentage of GnRH cells receiving VIP contacts compared to juveniles. These data suggest that the development of reproductive hormone rhythms and oestrous cyclicity may be, in part, due to modifications of VIP input to the GnRH system. [source] Photic Regulation of mt1 Melatonin Receptors in the Siberian Hamster Pars Tuberalis and Suprachiasmatic Nuclei: Involvement of the Circadian Clock and Intergeniculate LeafletJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2000Schuster In the Siberian hamster suprachiasmatic nuclei and pars tuberalis of the pituitary, high affinity mt1 melatonin receptors are present. We have previously shown that night applied light pulse induced an increase in mt1 mRNA expression in the suprachiasmatic nuclei of this species, independently of the endogenous melatonin. Here, we report the photic regulation of melatonin receptor density and mRNA expression in the suprachiasmatic nuclei and pars tuberalis of pinealectomized Siberian hamsters and the implication in this control of either the circadian clock or the intergeniculate leaflet. The results show that: (1) A 1-h light pulse, delivered during the night, induces a transitory increase in mt1 mRNA expression in the suprachiasmatic nuclei and pars tuberalis. After 3 h this increase has totally disappeared (suprachiasmatic nuclei) or is greatly reduced (pars tuberalis). (2) The melatonin receptor density, in the suprachiasmatic nuclei, is not affected by 1 or 3 h of light, while it is strongly increased in the pars tuberalis. (3) In hamsters kept in constant darkness, the mt1 mRNA rise is gated to the subjective night in the suprachiasmatic nuclei and pars tuberalis. In contrast, the light-induced increase in melatonin binding is also observed in the subjective day in the pars tuberalis. (4) intergeniculate leaflet lesion totally inhibits the mt1 mRNA expression rise in the suprachiasmatic nuclei, while it has no effect on the light-induced increase in mt1 mRNA in the pars tuberalis. However, the light-induced increase in melatonin receptor density is totally prevented by the intergeniculate leaflet lesion in the pars tuberalis. These results show that: (1) the photic regulations of mt1 mRNA expression and receptor density are independent of each other in both the suprachiasmatic nuclei and pars tuberalis; and (2) the circadian clock and the intergeniculate leaflet are implicated in the photic regulation of melatonin receptors but their level of action differs totally between the suprachiasmatic nuclei and pars tuberalis. [source] Circadian variation in the activity of the 5-HT1B autoreceptor in the region of the suprachiasmatic nucleus, measured by microdialysis in the conscious freely-moving ratBRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2000M L Garabette Intracerebral microdialysis was used to examine the function of the terminal 5-hydroxytryptamine1B (5-HT1B) autoreceptor in the region of the suprachiasmatic nuclei (SCN) of freely moving conscious rats at six time points or zeitgeber times (ZTs) across the light:dark cycle. Infusion of the 5-HT1A/1B agonist 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridyl)-1H-indole (RU24969) (1 ,M) via the microdialysis probe produced a decrease in 5-HT output when applied at ZTs 3, 6, 15 and 21 (69.8±11.9, 59±11.7, 43.9±17.2 and 45.7±17.0% respectively). At ZTs 9 and 18 RU24969 (1 ,m) failed to affect the 5-HT output significantly (28.0±11 and 32.8±24.6% decrease respectively). The profile of inhibition of 5-HT output following infusion of RU24969 (1 ,M) at ZT 6 was unaffected by concurrent infusion of the specific 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635) (1 ,M) (52.48±17.5% decrease). The data demonstrate a circadian rhythm in the activity of the 5-HT1B autoreceptor in the region of the SCN. British Journal of Pharmacology (2000) 131, 1569,1576; doi:10.1038/sj.bjp.0703753 [source] Roles of light and serotonin in the regulation of gastrin-releasing peptide and arginine vasopressin output in the hamster SCN circadian clockEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2010Jessica M. Francl Abstract Daily timing of the mammalian circadian clock of the suprachiasmatic nucleus (SCN) is regulated by photic input from the retina via the retinohypothalamic tract. This signaling is mediated by glutamate, which activates SCN retinorecipient units communicating to pacemaker cells in part through the release of gastrin-releasing peptide (GRP). Efferent signaling from the SCN involves another SCN-containing peptide, arginine vasopressin (AVP). Little is known regarding the mechanisms regulating these peptides, as literature on in vivo peptide release in the SCN is sparse. Here, microdialysis,radioimmunoassay procedures were used to characterize mechanisms controlling GRP and AVP release in the hamster SCN. In animals housed under a 14/10-h light,dark cycle both peptides exhibited daily fluctuations of release, with levels increasing during the morning to peak around midday. Under constant darkness, this pattern persisted for AVP, but rhythmicity was altered for GRP, characterized by a broad plateau throughout the subjective night and early subjective day. Neuronal release of the peptides was confirmed by their suppression with reverse-microdialysis perfusion of calcium blockers and stimulation with depolarizing agents. Reverse-microdialysis perfusion with the 5-HT1A,7 agonist 8-OH-DPAT ((±)-8-hydroxydipropylaminotetralin hydrobromide) during the day significantly suppressed GRP but had little effect on AVP. Also, perfusion with the glutamate agonist NMDA, or exposure to light at night, increased GRP but did not affect AVP. These analyses reveal distinct daily rhythms of SCN peptidergic activity, with GRP but not AVP release attenuated by serotonergic activation that inhibits photic phase-resetting, and activated by glutamatergic and photic stimulation that mediate this phase-resetting. [source] Food-entrainable circadian oscillators in the brainEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2009M. Verwey Abstract Circadian rhythms in mammalian behaviour and physiology rely on daily oscillations in the expression of canonical clock genes. Circadian rhythms in clock gene expression are observed in the master circadian clock, the suprachiasmatic nucleus but are also observed in many other brain regions that have diverse roles, including influences on motivational and emotional state, learning, hormone release and feeding. Increasingly, important links between circadian rhythms and metabolism are being uncovered. In particular, restricted feeding (RF) schedules which limit food availability to a single meal each day lead to the induction and entrainment of circadian rhythms in food-anticipatory activities in rodents. Food-anticipatory activities include increases in core body temperature, activity and hormone release in the hours leading up to the predictable mealtime. Crucially, RF schedules and the accompanying food-anticipatory activities are also associated with shifts in the daily oscillation of clock gene expression in diverse brain areas involved in feeding, energy balance, learning and memory, and motivation. Moreover, lesions of specific brain nuclei can affect the way rats will respond to RF, but have generally failed to eliminate all food-anticipatory activities. As a consequence, it is likely that a distributed neural system underlies the generation and regulation of food-anticipatory activities under RF. Thus, in the future, we would suggest that a more comprehensive approach should be taken, one that investigates the interactions between multiple circadian oscillators in the brain and body, and starts to report on potential neural systems rather than individual and discrete brain areas. [source] Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clock in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009Xiang Mou Abstract The mammalian circadian clock in the suprachiasmatic nucleus (SCN) maintains environmental synchrony through light signals transmitted by glutamate released from retinal ganglion terminals. Brain-derived neurotrophic factor (BDNF) is required for light/glutamate to reset the clock. In the hippocampus, BDNF is activated by the extracellular protease, plasmin, which is produced from plasminogen by tissue-type plasminogen activator (tPA). We provide data showing expression of proteins from the plasminogen activation cascade in the SCN and their involvement in circadian clock phase-resetting. Early night glutamate application to SCN-containing brain slices resets the circadian clock. Plasminogen activator inhibitor-1 (PAI-1) blocked these shifts in slices from wild-type mice but not mice lacking its stabilizing protein, vitronectin (VN). Plasmin, but not plasminogen, prevented inhibition by PAI-1. Both plasmin and active BDNF reversed ,2 -antiplasmin inhibition of glutamate-induced shifts. ,2 -Antiplasmin decreased the conversion of inactive to active BDNF in the SCN. Finally, both tPA and BDNF allowed daytime glutamate-induced phase-resetting. Together, these data are the first to demonstrate expression of these proteases in the SCN, their involvement in modulating photic phase-shifts, and their activation of BDNF in the SCN, a potential ,gating' mechanism for photic phase-resetting. These data also demonstrate a functional interaction between PAI-1 and VN in adult brain. Given the usual association of these proteins with the extracellular matrix, these data suggest new lines of investigation into the locations and processes modulating mammalian circadian clock phase-resetting. [source] Daily rhythms and sex differences in vasoactive intestinal polypeptide, VIPR2 receptor and arginine vasopressin mRNA in the suprachiasmatic nucleus of a diurnal rodent, Arvicanthis niloticusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009M. M. Mahoney Abstract Diurnal and nocturnal animals differ with respect to the time of day at which the ovulatory surge in luteinizing hormone occurs. In some species this is regulated by the suprachiasmatic nucleus (SCN), the primary circadian clock, via cells that contain vasoactive intestinal polypeptide (VIP) and vasopressin (AVP). Here, we evaluated the hypothesis that chronotype differences in the timing of the luteinizing hormone surge are associated with rhythms in expression of the genes that encode these neuropeptides. Diurnal grass rats (Arvicanthis niloticus) were housed in a 12/12-h light,dark cycle and killed at one of six times of day (Zeitgeber time 1, 5, 9, 13, 17, 21; ZT 0 = lights-on). In-situ hybridization was used to compare levels of vip, avp and VIP receptor mRNA (vipr2) in the SCN of intact females, ovariectomized females, ovariectomized females given estradiol and intact males. We found a sex difference in vip rhythms with a peak occurring at ZT 13 in males and ZT 5 in intact females. In all groups avp mRNA rhythms peaked during the day, from ZT 5 to ZT 9, and had a trough in the dark at ZT 21. There was a modest rhythm and sex difference in the pattern of vipr2. Most importantly, the patterns of each of these SCN rhythms relative to the light,dark cycle resembled those seen in nocturnal rodents. Chronotype differences in timing of neuroendocrine events associated with ovulation are thus likely to be generated downstream of the SCN. [source] Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainmentEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007Carolina Escobar Abstract Restricted feeding schedules (RFS) are a potent Zeitgeber that uncouples daily metabolic and clock gene oscillations in peripheral tissues from the suprachiasmatic nucleus (SCN), which remains entrained to the light,dark cycle. Under RFS, animals develop food anticipatory activity (FAA), characterized by arousal and increased locomotion. Food availability in nature is not precise, which suggests that animals need to adjust their food-associated activity on a daily basis. This study explored the capacity of rats to adjust to variable and unpredictable feeding schedules. Rats were exposed either to RFS with fixed daily meal (RF) or to a variable meal time (VAR) during the light phase. RF and VAR rats exhibited daily metabolic oscillations driven by the last meal event; however, VAR rats were not able to show a robust adjustment in the anticipating corticosterone peak. VAR rats were unable to exhibit FAA but exhibited a daily activation pattern in phase with the previous meal. In both groups the dorsomedial nucleus of the hypothalamus and arcuate nucleus, involved in energy balance, exhibited increased c-Fos expression 24 h after the last meal, while only RF rats exhibited low c-Fos expression in the SCN. Data show that metabolic and behavioural food-entrained rhythms can be reset on a daily basis; the two conditions elicit a similar hypothalamic response, while only the SCN is inhibited in rats exhibiting anticipatory activity. The variable feeding strategy uncovered a rapid (24-h basis) resetting mechanism for metabolism and general behaviour. [source] A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003V. M. King Abstract A mouse bearing a novel transgene encoding the human VPAC2 receptor (hVIPR; Shen et al. (2000) PNAS, 97, 11575,11580) was used to investigate circadian function in the hypothalamic suprachiasmatic nuclei (SCN). Neurons expressing hVPAC2R, detected by a beta-galactosidase (,-GAL) tag, have a distinct distribution within the SCN, closely matching that of neurophysin (NP) neurons and extending into the region of peptide histidine isoleucine (PHI) cells. In common with NP and PHI cells, neurons expressing hVPAC2R are circadian in nature, as revealed by synchronous rhythmic expression of mPERIOD (mPER) proteins. A population of SCN cells not expressing PHI, NP or hVPAC2R exhibited circadian PER expression antiphasic with the rest of the SCN. Nocturnal light exposure induced mPER1 in the ventral SCN and mPER2 widely across the nucleus. Induction of nuclear mPER2 in hVPAC2R cells confirmed their photic responsiveness. Having established their circadian properties, we tested the utility of SCN neurons expressing the hVIPR transgene as functionally and anatomically explicit markers for SCN tissue grafts. Prenatal SCN tissue from hVIPR transgenic pups survived transplantation into adult CD1 mice, and expressed ,-GAL, PER and PHI. Over a series of studies, hVIPR transgenic SCN grafts restored circadian activity rhythms to 17 of 72 arrhythmic SCN lesioned recipients (23.6%). By using heterozygous hVIPR transgenic grafts on a heterozygous Clock mutant background we confirmed that restored activity rhythms were conferred by the donor tissue. We conclude that the hVIPR transgene is a powerful and flexible tool for examination of circadian function in the mouse SCN. [source] A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003V.M. King No abstract is available for this article. [source] Spatial and temporal variation of passer Per2 gene expression in two distinct cell groups of the suprachiasmatic hypothalamus in the house sparrow (Passer domesticus)EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2002Ute Abraham Abstract In mammals, the major pacemaker controlling circadian rhythmicity is located in the hypothalamic suprachiasmatic nuclei. Although there is evidence for the presence of a hypothalamic circadian oscillator in birds from lesioning studies, neuroanatomical, neurochemical and functional investigations have failed to identify its exact location. Two cell groups in the avian hypothalamus have been shown to bear characteristics of the mammalian suprachiasmatic nucleus: the suprachiasmatic nucleus and the lateral hypothalamic retinorecipient nucleus. We cloned an avian period homologue (pPer2) and investigated the temporal and spatial expression pattern of this gene in the house sparrow hypothalamus using in situ hybridization. Applying quantitative morphometry, we found rhythmic expression of pPer2 during light,dark as well as in constant conditions in the suprachiasmatic nucleus and in the lateral hypothalamus. The temporal and spatial distribution of pPer2 expression in the suprachiasmatic nucleus suggest a longitudinal compartmentalization of the nucleus with period gene expression being initiated in the most rostral portion of the suprachiasmatic nucleus before lights on. In the lateral hypothalamus, phasing of pPer2 -rhythmicity appeared different from the suprachiasmatic nucleus. The major difference between light,dark and constant conditions was a decrease in the amplitude of pPer2 rhythmicity in the suprachiasmatic nucleus. Our data demonstrate that, unlike in mammals, Per gene expression in the suprachiasmatic hypothalamus of the house sparrow is not confined to a single cell group, indicating a more complex organization of the circadian oscillator in the hypothalamus of birds. [source] Dopaminergic signalling in the rodent neonatal suprachiasmatic nucleus identifies a role for protein kinase A and mitogen-activated protein kinase in circadian entrainmentEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002Irina L. Schurov Abstract The circadian clock of the suprachiasmatic nuclei (SCN) of perinatal rodents is entrained by maternally derived cues. The SCN of neonatal Syrian hamsters express high-affinity D1 dopamine receptors, and the circadian activity,rest cycle of pups can be entrained by maternal injection of dopaminergic agonists. The present study sought to characterize the intracellular pathways mediating dopaminergic signalling in neonatal rodent SCN. Both dopamine and the D1 agonist SKF81297 caused a dose-dependent increase in phosphorylation of the transcriptional regulator Ca2+/cyclic AMP response element (CRE) binding protein (CREB) in suprachiasmatic GABA-immunoreactive (-IR) neurons held in primary culture. The D1 antagonist SCH23390 blocked this effect. Dopaminergic induction of pCREB-IR in GABA-IR neurons was also blocked by a protein kinase A (PKA) inhibitor, 5,24, and by the MAPK inhibitor, PD98059, whereas KN-62, an inhibitor of Ca2+/calmodulin-dependent (CAM) kinase II/IV was ineffective. Treatment with NMDA increased the level of intracellular Ca2+ in the cultured primary SCN neurons in Mg2+ -free medium, but SKF81297 did not. Blockade of CaM kinase II/IV with KN-62 inhibited glutamatergic induction of pCREB-IR in GABA-IR neurons, whereas 5,24 was ineffective, confirming the independent action of Ca2+ - and cAMP-mediated inputs on pCREB. SKF81297 caused an increase in pERK-IR in SCN cells, and this was blocked by 5,24, indicative of activation of MAPK via D1/cAMP. These results demonstrate that dopaminergic signalling in the neonatal SCN is mediated via the D1-dependent activation of PKA and MAPK, and that this is independent of the glutamatergic regulation via Ca2+ and CaM kinase II/IV responsible for entrainment to the light/dark cycle. [source] Functional analysis of the basic helix-loop-helix transcription factor DEC1 in circadian regulationFEBS JOURNAL, Issue 22 2004Interaction with BMAL The basic helix-loop-helix transcription factor DEC1 is expressed in a circadian manner in the suprachiasmatic nucleus where it seems to play a role in regulating the mammalian circadian rhythm by suppressing the CLOCK/BMAL1-activated promoter. The interaction of DEC1 with BMAL1 has been suggested as one of the molecular mechanisms of the suppression [Honma, S., Kawamoto, T., Takagi, Y., Fujimoto, K., Sato, F., Noshiro, M., Kato, Y. & Honma, K. (2002) Nature419, 841,844]. Deletion analysis of DEC1 demonstrated that its N-terminal region, which includes the basic helix-loop-helix domain, was essential for both the suppressive activity and the interaction with BMAL1, as DEC1 lacking the basic region did not show any suppression or interaction. Furthermore, we found that Arg65 in the basic region, which is conserved among group B basic helix-loop-helix proteins, was responsible for the suppression, for the interaction with BMAL1 and for its binding to CACGTG E-boxes. However, substitution of His57 for Ala significantly reduced the E-box binding activity of DEC1, although it did not affect the interaction with BMAL1 or suppression of CLOCK/BMAL1-induced transcription. On the other hand, the basic region-deleted DEC1 acted in a dominant-negative manner for DEC1 activity, indicating that the basic region was not required for homodimer formation of DEC1. Moreover, mutant DEC1 also counteracted DEC2-mediated suppressive activity in a dominant-negative manner. The heterodimer formation of DEC1 and DEC2 was confirmed by pull-down assay. These findings suggest that the basic region of DEC1 participates in the transcriptional regulation through a protein,protein interaction with BMAL1 and DNA binding to the E-box. [source] PER2 controls circadian periods through nuclear localization in the suprachiasmatic nucleusGENES TO CELLS, Issue 11 2007Koyomi Miyazaki Molecular circadian clock regulation engages a negative feedback loop comprising components of the negative limb, PERs and CRYs. In addition to the rhythmic transcriptional regulation of clock genes, controlled subcellular localization might contribute to the molecular mechanism of the mammalian circadian clock. To address this issue, we generated transgenic (TG) mice lines harboring either rat PER2 (rPER2) with a deleted nuclear localizing domain [NLD(,)] or intact PER2. In comparison with wild-type (WT) control, the period of the circadian locomotor rhythm in TG mice over-expressing NLD(,) PER2 was longer, while that in TG mice over-expressing intact PER2 was shorter. The nuclear entry of endogenous PER2, CRY1 and CRY2 was delayed in the suprachiasmatic nucleus (SCN) of NLD(,) PER2 TG mice under constant darkness, whereas that of mouse PER2 (mPER2) is accelerated in the SCN of intact PER2 TG mice. Under constant light, the locomotor activity of NLD(,) PER2 TG mice became arrhythmic, whereas WT animals remained rhythmic. These data indicate that PER2 controls circadian periods through nuclear localization in the SCN. In addition, sleep architecture was also affected in intact PER2 TG mice, suggesting PER2 can modulate a sleep molecular mechanism. [source] Circadian rhythm of aromatic l -amino acid decarboxylase in the rat suprachiasmatic nucleus: gene expression and decarboxylating activity in clock oscillating cellsGENES TO CELLS, Issue 5 2002Yoshiki Ishida Background: Aromatic l -amino acid decarboxylase (AADC) is the enzyme responsible for the decarboxylation step in both the catecholamine and indoleamine synthetic pathways. In the brain, however, a group of AADC containing neurones is found outside the classical monoaminergic cell groups. Since such non-monoaminergic AADC is expressed abundantly in the suprachiasmatic nucleus (SCN), the mammalian circadian centre, we characterized the role of AADC in circadian oscillation. Results : AADC gene expression was observed in neurones of the dorsomedial subdivision of the SCN and its dorsal continuant in the anterior hypothalamic area. These AADC neurones could uptake exogenously applied L-DOPA and formed dopamine. AADC was co-expressed with vasopressin and the clock gene Per1 in the neurones of the SCN. Circadian gene expression of AADC was observed with a peak at subjective day and a trough at subjective night. The circadian rhythm of AADC enzyme activity in the SCN reflects the expression of the gene. Conclusions: Non-monoaminergic AADC in the SCN is expressed in clock oscillating cells, and the decarboxylating activity of master clock cells are under the control of the circadian rhythm. [source] Modifications of retinal afferent activity induce changes in astroglial plasticity in the hamster circadian clockGLIA, Issue 2 2001Monique Lavialle Abstract The circadian clock, located in the suprachiasmatic nucleus (SCN) of the hypothalamus in mammals, exhibits astroglial plasticity indicated by GFAP expression over the 24-h period. In this study, we evaluated the role of neuronal retinal input in the observed changes. Modifications of retinal input, either by rearing animals under darkness (DD) or under constant light (LL), or by suppressing afferent input (bilateral enucleation), induced drastic changes in astroglial plasticity. In enucleated animals, a dramatic decrease in GFAP expression was evident in the area of the SCN deprived of retinal projections, whereas persistence of a rhythmic variation was in those areas still exhibiting GFAP expression. By contrast, no changes in astrocytic plasticity were detected in hamsters maintained under LL. These data suggest two fundamental roles for astrocytes within the SCN: (1) to regulate and mediate glutamate released by retinal terminals throughout the neuronal network to facilitate photic signal transmission; (2) to contribute to synchronization between suprachiasmatic neurons. GLIA 34:88,100, 2001. © 2001 Wiley-Liss, Inc. [source] |