Home About us Contact | |||
Sulfur Dioxide (sulfur + dioxide)
Selected AbstractsVoltammetric Determination of Free and Total Sulfur Dioxide in BeerELECTROANALYSIS, Issue 5-6 2003J. Almeida Abstract A voltammetric method for the determination of free and total sulfur dioxide in beer is described. First, volatile aldehydes (mainly acetaldehyde) are purged with nitrogen from a beer sample diluted in alkaline medium, collected in an appropriate electrolyte trapping solution and determined, after derivatization with hydrazine, by voltammetry using a hanging mercury drop electrode. Then, the remaining beer solution is strongly acidified and (total) sulfur dioxide is purged with nitrogen, collected in an appropriate electrolyte trapping solution and determined by voltammetry. The free sulfur dioxide concentration is calculated by difference between (total) sulfur dioxide and acetaldehyde concentrations. The proposed method has a relative standard deviation of about 2.1% and 4.4%, respectively for (total) sulfur dioxide and free sulfur dioxide concentrations normally found in beer, and results are in good agreement with those obtained by the p -rosaniline reference method. [source] Sulfur Dioxide and Water: Structures and Energies of the Hydrated Species SO2·nH2O, [HSO3],·nH2O, [SO3H],·nH2O, and H2SO3·nH2O (n = 0,8)EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 10 2009Ralf Steudel Abstract The structures of a large number of hydrates of sulfur dioxide (SO2·nH2O), of the sulfonate ion ([HSO3],·nH2O), of the tautomeric hydrogensulfite anion ([SO3H],·nH2O), and of sulfurous acid (H2SO3·nH2O) with up to eight water molecules attached to these species have been optimized at the B3LYP/6-31G(2df,p) level of theory (DFT). The calculated vibrational frequencies allow the definite assignment of certain characteristic modes, and in this way a convincing interpretation of published spectra of aqueous SO2 as well as of SO2 adsorbed on very cold ice crystals has been achieved for the first time. Single-point calculations at the G3X(MP2) level of theory were used to calculate the binding energies of the water molecules in SO2·nH2O as well as the relative stabilities of the isomeric anionic species [HSO3],·nH2O and [SO3H],·nH2O. Generally, the water molecules tend to stick together forming clusters, whereas the particular sulfur-containing molecule remains at the surface of the water cluster, but it is always strongly hydrogen-bonded. Only when there are more than six water molecules are the anions more or less completely surrounded by water molecules. DFT calculations erroneously predict that the gaseous hydrated sulfonate ions are more stable than the isomeric hydrogensulfite ions, even when hydrated with six water molecules. However, if these hydrated species are calculated as being embedded in a polar continuum simulating the aqueous phase, the hydrogensulfite ions are more stable than the sulfonate ions, in agreement with various spectroscopic observations on aqueous sulfite solutions. On the other hand, at the higher G3X(MP2) level, the gaseous hydrated hydrogensulfite anions are more stable than the corresponding sulfonate ions only if the number of water molecules is larger than four, whereas for the weakly hydrated anions the order of relative energies is reversed. The possible implications of these results for the enzymatic oxidation of "sulfite ions" ([HSO3], and [SO3H],) by sulfite oxidase are discussed. The conversion of SO2·6H2O into its isomer H2SO3·5H2O is predicted to be exothermic (,H°298 = ,56.1 kJ,mol,1) and exergonic (,G°298 = ,22.5 kJ,mol,1). (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] ChemInform Abstract: Sulfur Dioxide and Water: Structures and Energies of the Hydrated Species SO2·nH2O, [HSO3] - ·nH2O, [SO3H] - ·nH2O, and H2SO3·nH2O (n = 0,8)CHEMINFORM, Issue 25 2009Ralf Steudel Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Generation of ortho-Quinone Methides upon Thermal Extrusion of Sulfur Dioxide from Benzosultones.CHEMINFORM, Issue 50 2005Krzysztof Wojciechowski Abstract For Abstract see ChemInform Abstract in Full Text. [source] Expression of caspase and apoptotic signal pathway induced by sulfur dioxideENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2010Juli Bai Abstract Sulfur dioxide (SO2) is a common air pollutant that is released in low concentrations into the atmosphere and in higher concentrations in some work places. In the present study, male Wistar rats were housed in exposure chambers and treated with 14.00 ± 1.01, 28.00 ± 1.77, and 56.00 ± 3.44 mg/m3 SO2 for 7 days (6 hr/day), while control rats were exposed to filtered air under the same conditions. The mRNA and protein levels of caspase-3, caspase-8, and caspase-9 were analyzed using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and an immunohistochemistry method. Activities of caspases were detected using colorimetric and fluorescent assays. Chromatin degradation and cell morphological changes were investigated by TUNEL assay and H&E staining in livers and lungs, respectively. The results showed that mRNA levels, protein levels and activities of caspase-3, caspase-8, and caspase-9 were increased in a dose-dependent manner in livers and lungs of rats after SO2 inhalation. In addition, livers were infiltrated with lymphocytes, congestion and inflammation occurred in lungs, and eosinophil cells and apoptotic cells increased in both livers and lungs after SO2 inhalation. These results suggest that SO2 exposure increases the expression and activity of both initiator and and effector caspases, and may induce apoptosis in liver and lung of rats through both death receptor and mitochondrial pathways. Environ. Mol. Mutagen. 2010. © 2009 Wiley-Liss, Inc. [source] DNA damage in mice treated with sulfur dioxide by inhalationENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2005Ziqiang Meng Abstract Sulfur dioxide (SO2) is a ubiquitous air pollutant produced by the burning of fossil fuels. In this study, single-cell gel electrophoresis (the Comet assay) was used to evaluate the DNA damage produced by inhalation exposure of mice to SO2. Male and female mice were housed in exposure chambers and treated with 14.00 ± 1.25, 28.00 ± 1.98, 56.00 ± 3.11, and 112.00 ± 3.69 mg/m3 SO2 for 6 hr/day for 7 days, while control groups were exposed to filtered air. Comet assays were performed on blood lymphocytes and cells from the brain, lung, liver, spleen, kidney, intestine, and testicles of the animals. SO2 caused significant, dose-dependent increases in DNA damage, as measured by Olive tail moment, in all the cell types analyzed from both sexes of mice. The results indicate that inhalation exposure to SO2 damages the DNA of multiple organs in addition to the lung, and suggests that this damage could result in mutation, cancer, and other diseases related to DNA damage. Further work will be required to understand the ultimate toxicological significance of this damage. These data also suggest that detecting DNA damage in blood lymphocytes, using the Comet assay, may serve as a useful tool for evaluating the impact of pulmonary SO2 exposure in human biomonitoring studies. Environ. Mol. Mutagen., 2005. © 2005 Wiley-Liss, Inc. [source] CH3CH2SCH3,+,OH radicals: temperature-dependent rate coefficient and product identification under atmospheric pressure of air,JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 10 2010Gabriela Oksdath-Mansilla Abstract Relative rate coefficients have been determined for the gas-phase reaction of hydroxyl (OH) radicals with ethyl methyl sulfide (EMS) using isobutene as a reference compound. The experiments were performed in a 1080,L quartz glass photoreactor in the temperature range of 286,313,K at a total pressure of 760,±,10,Torr synthetic air using in situ FTIR absorption spectroscopy to monitor the concentration-time behaviors of reactants and products. OH radicals were produced by the 254,nm photolysis of hydrogen peroxide (H2O2). The kinetic data obtained were used to derive the following Arrhenius expression valid in the temperature range of 286,313,K (in units of cm3,molecule,1,s,1): The rate coefficient displays a negative temperature dependence and low pre-exponential factor which supports the existence of an addition mechanism for the reaction involving reversible OH-adduct formation. The results are compared with previous data of other sulfides from the literature and are rationalized in terms of structure,reactivity relationships. Additionally, product identification of the title reaction was performed for the first time by the FTIR technique under atmospheric conditions. Sulfur dioxide, formaldehyde, and formic acid were observed as degradation products in agreement with the two possible reaction channels (addition/abstraction). Copyright © 2010 John Wiley & Sons, Ltd. [source] Voltammetric Determination of Free and Total Sulfur Dioxide in BeerELECTROANALYSIS, Issue 5-6 2003J. Almeida Abstract A voltammetric method for the determination of free and total sulfur dioxide in beer is described. First, volatile aldehydes (mainly acetaldehyde) are purged with nitrogen from a beer sample diluted in alkaline medium, collected in an appropriate electrolyte trapping solution and determined, after derivatization with hydrazine, by voltammetry using a hanging mercury drop electrode. Then, the remaining beer solution is strongly acidified and (total) sulfur dioxide is purged with nitrogen, collected in an appropriate electrolyte trapping solution and determined by voltammetry. The free sulfur dioxide concentration is calculated by difference between (total) sulfur dioxide and acetaldehyde concentrations. The proposed method has a relative standard deviation of about 2.1% and 4.4%, respectively for (total) sulfur dioxide and free sulfur dioxide concentrations normally found in beer, and results are in good agreement with those obtained by the p -rosaniline reference method. [source] Expression of caspase and apoptotic signal pathway induced by sulfur dioxideENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2010Juli Bai Abstract Sulfur dioxide (SO2) is a common air pollutant that is released in low concentrations into the atmosphere and in higher concentrations in some work places. In the present study, male Wistar rats were housed in exposure chambers and treated with 14.00 ± 1.01, 28.00 ± 1.77, and 56.00 ± 3.44 mg/m3 SO2 for 7 days (6 hr/day), while control rats were exposed to filtered air under the same conditions. The mRNA and protein levels of caspase-3, caspase-8, and caspase-9 were analyzed using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and an immunohistochemistry method. Activities of caspases were detected using colorimetric and fluorescent assays. Chromatin degradation and cell morphological changes were investigated by TUNEL assay and H&E staining in livers and lungs, respectively. The results showed that mRNA levels, protein levels and activities of caspase-3, caspase-8, and caspase-9 were increased in a dose-dependent manner in livers and lungs of rats after SO2 inhalation. In addition, livers were infiltrated with lymphocytes, congestion and inflammation occurred in lungs, and eosinophil cells and apoptotic cells increased in both livers and lungs after SO2 inhalation. These results suggest that SO2 exposure increases the expression and activity of both initiator and and effector caspases, and may induce apoptosis in liver and lung of rats through both death receptor and mitochondrial pathways. Environ. Mol. Mutagen. 2010. © 2009 Wiley-Liss, Inc. [source] DNA damage in mice treated with sulfur dioxide by inhalationENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2005Ziqiang Meng Abstract Sulfur dioxide (SO2) is a ubiquitous air pollutant produced by the burning of fossil fuels. In this study, single-cell gel electrophoresis (the Comet assay) was used to evaluate the DNA damage produced by inhalation exposure of mice to SO2. Male and female mice were housed in exposure chambers and treated with 14.00 ± 1.25, 28.00 ± 1.98, 56.00 ± 3.11, and 112.00 ± 3.69 mg/m3 SO2 for 6 hr/day for 7 days, while control groups were exposed to filtered air. Comet assays were performed on blood lymphocytes and cells from the brain, lung, liver, spleen, kidney, intestine, and testicles of the animals. SO2 caused significant, dose-dependent increases in DNA damage, as measured by Olive tail moment, in all the cell types analyzed from both sexes of mice. The results indicate that inhalation exposure to SO2 damages the DNA of multiple organs in addition to the lung, and suggests that this damage could result in mutation, cancer, and other diseases related to DNA damage. Further work will be required to understand the ultimate toxicological significance of this damage. These data also suggest that detecting DNA damage in blood lymphocytes, using the Comet assay, may serve as a useful tool for evaluating the impact of pulmonary SO2 exposure in human biomonitoring studies. Environ. Mol. Mutagen., 2005. © 2005 Wiley-Liss, Inc. [source] Pilot scale SO2 control by dry sodium bicarbonate injection and an electrostatic precipitatorENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 3 2007Michael J. Pilat Abstract A 500 actual cubic feet gas per minute (acfm) pilot-scale SO2 control study was undertaken to investigate flue gas desulfurization (FGD) by dry sodium sorbents in 400°F (204.5°C) flue gases emitted from a coal fired boiler with flue gas concentrations between 350 and 2500 ppm SO2. Powdered sodium alkaline reagents were injected into the hot flue gas downstream of the air preheater and the spent reagents were collected using an electrostatic precipitator. Three different sorbents were used: processed sodium bicarbonate of two particle sizes; solution mined sodium bicarbonate, and processed sodium sesquicarbonate. SO2 concentrations were measured upstream of the reagent injection, 25-ft (7.62 m) downstream of the injection point, and downstream of the electrostatic precipitator. SO2 collection efficiencies ranged from 40 to 80% using sodium bicarbonate stoichiometric ratios from 0.5 to 3.0. Much of the in-duct SO2 removal occurred during the first second of reagent reaction time, indicating that the sulfur dioxide,sodium reaction rates may be faster than have been measured for fixed bed measurements reported in the literature. © 2007 American Institute of Chemical Engineers Environ Prog, 2007 [source] Comparison of air quality management strategies of PM10, SO2, and NOx by an industrial source complex model in BeijingENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 1 2007Gaoxiang Ying Abstract The primary air pollutants in the Beijing urban area are fine particulate matter (PM10), sulfur dioxide (SO2), and nitrogen oxides (NOx). Using suitable emission factors for point, area, and line sources from 20 categories of industrial, commercial, domestic and traffic, total yearly mean emissions were estimated at 103.3 kton of PM10, 209.9 kton of SO2, and 225.4 kton of NOx in 1999. To abate this elevated air pollution, three air quality management schemes are adopted. After the implementation, the annual mean ground-level concentrations of air pollutants are predicted by an industrial source complex short term (ISCST3) dispersion model and compared by the geographic information system (GIS). The ISCST3 dispersion model is used by inputting emission inventory and meteorological data with 1 h temporal and 1 km × 1 km spatial resolution. The model validity is verified by its agreement with monitoring data from Beijing's Environmental Protection Bureau. Results indicate that the levels of PM10, SO2, and NOx in Beijing are improved gradually because of the adoption of these three control schemes. The predicted annual mean concentrations decreased from 90.63 to 67.28 ,g/m3 for PM10, 57.94 to 31.77 ,g/m3 for SO2, and 119.97 to 73.83 ,g/m3 for NOx, respectively. © 2007 American Institute of Chemical Engineers Environ Prog 26:33,42, 2007. [source] Sulfur Dioxide and Water: Structures and Energies of the Hydrated Species SO2·nH2O, [HSO3],·nH2O, [SO3H],·nH2O, and H2SO3·nH2O (n = 0,8)EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 10 2009Ralf Steudel Abstract The structures of a large number of hydrates of sulfur dioxide (SO2·nH2O), of the sulfonate ion ([HSO3],·nH2O), of the tautomeric hydrogensulfite anion ([SO3H],·nH2O), and of sulfurous acid (H2SO3·nH2O) with up to eight water molecules attached to these species have been optimized at the B3LYP/6-31G(2df,p) level of theory (DFT). The calculated vibrational frequencies allow the definite assignment of certain characteristic modes, and in this way a convincing interpretation of published spectra of aqueous SO2 as well as of SO2 adsorbed on very cold ice crystals has been achieved for the first time. Single-point calculations at the G3X(MP2) level of theory were used to calculate the binding energies of the water molecules in SO2·nH2O as well as the relative stabilities of the isomeric anionic species [HSO3],·nH2O and [SO3H],·nH2O. Generally, the water molecules tend to stick together forming clusters, whereas the particular sulfur-containing molecule remains at the surface of the water cluster, but it is always strongly hydrogen-bonded. Only when there are more than six water molecules are the anions more or less completely surrounded by water molecules. DFT calculations erroneously predict that the gaseous hydrated sulfonate ions are more stable than the isomeric hydrogensulfite ions, even when hydrated with six water molecules. However, if these hydrated species are calculated as being embedded in a polar continuum simulating the aqueous phase, the hydrogensulfite ions are more stable than the sulfonate ions, in agreement with various spectroscopic observations on aqueous sulfite solutions. On the other hand, at the higher G3X(MP2) level, the gaseous hydrated hydrogensulfite anions are more stable than the corresponding sulfonate ions only if the number of water molecules is larger than four, whereas for the weakly hydrated anions the order of relative energies is reversed. The possible implications of these results for the enzymatic oxidation of "sulfite ions" ([HSO3], and [SO3H],) by sulfite oxidase are discussed. The conversion of SO2·6H2O into its isomer H2SO3·5H2O is predicted to be exothermic (,H°298 = ,56.1 kJ,mol,1) and exergonic (,G°298 = ,22.5 kJ,mol,1). (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Complexes of the Bicyclic Multifunctional Sulfur-Nitrogen Ligand F3CCN5S3 with Co2+, Zn2+, Cu2+, and Cd,EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 17 2005Carsten Knapp Abstract The ability of the sulfur-nitrogen-carbon bicycle F3CCN5S3 to act as a donor towards transition metal cations has been investigated. F3CCN5S3 forms complexes with [M(SO2)2](AsF6)2 [M = Co, Cu, Zn, Cd] in the ratio 2:1 of the composition [M(F3CCN5S3)2(OSO)2(FAsF5)2] [M = Co (1), Zn (3)], [Cu(F3CCN5S3)2(,-F)(,-F2AsF4)]2 (4), and [Cd(F3CCN5S3)(,-F3CCN5S3)(,2 -F2AsF4)2]2 (5) in liquid sulfur dioxide. In the octahedral Co and Zn complexes F3CCN5S3 coordinates as a monodentate ligand through the bridging nitrogen atom N5, which carries the highest negative charge according to theoretical calculations. With Cu2+ a dinuclear structure with a central planar, four-membered Cu2F2 ring is formed, which has the shortest Cu···Cu distance of all structurally characterized Cu2F2 units. Similar to the Co and Zn complexes, F3CCN5S3 acts as a terminal monodentate ligand in the Cu compound. The reaction with the larger and softer Cd2+ cation results in a dinuclear complex that contains terminal and bridging F3CCN5S3 ligands. The bridging ligands coordinate through N5 and a nitrogen atom neighboring the carbon atom. In addition, a third weak bonding interaction between one fluorine atom of the trifluoromethyl substituent and the Cd2+ center is observed. The formation of the different structures and the versatile coordination modes of the F3CCN5S3 ligand are discussed. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source] Metal Corrosion and its Impact on Glass Tempering Furnace DesignINTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 5 2010Peter Tiernan A reliable well-designed tempering furnace is considered to be the cornerstone of any modern glass-processing facility. This paper addresses a series of engineering anomalies encountered during the commissioning of such a glass-processing furnace. Following the installation of a furnace in a European facility, small black deposits were noticed on both the silica-fused rollers used to transport the glass through the hearth of the furnace and on the processed glass surface itself. EDAX and scanning electron microscopy investigations indicated conclusively that the deposits were primarily constituted of sodium sulfate and trace elements consistent with stainless steel (chromium, iron, and nickel). Traditionally, high-density glass fiber was used to insulate the roof walls and side walls of tempering furnaces; however, it was noticed in this particular case that rolled stainless steel sheeting (SS316) was used. Chemical and X-ray diffraction analyses were used to pinpoint the origin of the deposits. It was determined that poor material selection choices taken during the design stage of the furnace in question were at fault. The combination of stainless steel and sulfur dioxide (SO2 is used as a lubricant to prevent scuffing) at elevated temperatures (>650°C) generated droplets of sodium sulfate, which condensed due to the convectional flow of the heat currents within the oven. These droplets scorched the glass surface and destroyed the fused silica rollers. As a recommendation, the usage of stainless steel and other nonrefractory metals should be avoided in the design of any future glass tempering furnaces. [source] Highly Efficient and Stereoselective Julia,Kocienski Protocol for the Synthesis of ,-Fluoro-,,,-unsaturated Esters and Weinreb Amides Employing 3,5-Bis(trifluoromethyl)phenyl (BTFP) SulfonesADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2008Diego Abstract ,-Fluoroacetates 3 and Weinreb amide 4, bearing a ,-[3,5-bis(trifluoromethyl)phenyl]sulfonyl (BTFP-sulfonyl) group at the ,-position, are employed in the highly stereoselective synthesis of ,-fluoro-,,,-unsaturated alkenoates and Weinreb amides, respectively. Aromatic and aliphatic aldehydes are condensed under extremely mild and simple reaction conditions using potassium carbonate in dimethylformamide at room temperature under solid-liquid phase-transfer catalysis conditions in good yields and high Z -diastereoselectivities, specially in the case of the fluorinated Weinreb amides. A detailed computational mechanistic study suggests a final non-concerted elimination of sulfur dioxide and 3,5-bis(trifluoromethyl)phenoxide and explains the observed high stereoselectivities for the reaction on the basis of thermodynamic and kinetic considerations. [source] Trends of the bonding effect on the performance of DFT methods in electric properties calculations: A pattern recognition and metric space approach on some XY2 (X = O, S and Y = H, O, F, S, Cl) moleculesJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 2 2010Christos Christodouleas Abstract A test set of 10 molecules (open and ring forms of ozone and sulfur dioxide as well as water and hydrogen sulfide and their respective fluoro- and chloro-substituted analogs) of specific atmospheric interest has been formed as to assess the performance of various density functional theory methods in (hyper)polarizability calculations against well-established ab initio methods. The choice of these molecules was further based on (i) the profound change in the physics between isomeric systems, e.g., open (C2v) and ring (D3h) forms of ozone, (ii) the relation between isomeric forms, e.g., open and ring form of sulfur dioxide (both of C2v symmetry), and (iii) the effect of the substitution, e.g., in fluoro- and chloro-substituted water analogs. The analysis is aided by arguments chosen from the information theory, graph theory, and pattern recognition fields of Mathematics: In brief, a multidimensional space is formed by the methods which are playing the role of vectors with the independent components of the electric properties to act as the coordinates of these vectors, hence the relation between different vectors (e.g., methods) can be quantified by a proximity measure. Results are in agreement with previous studies revealing the acceptable and consistent behavior of the mPW1PW91, B3P86, and PBE0 methods. It is worth noting the remarkable good performance of the double hybrid functionals (namely: B2PLYP and mPW2PLYP) which are for the first time used in calculations of electric response properties. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010 [source] MINIMIZING COLOR DEGRADATION IN BLUSH WINES,JOURNAL OF FOOD QUALITY, Issue 5 2003J. HATFIELD Cabernet Sauvignon wines produced with sulfur dioxide (SO2) at different levels (0, 30, 60, and 120 mg/L) added at crush and bottling were evaluated during 12 months of storage at 16C. Addition of SO2 at crush did not affect browning (absorbance at 420 nm) but increased red color (absorbance at 520 nm). As SO2 levels at bottling increased, browning and red color decreased. Prefermentation treatments (hyperoxidation, nitrogen sparging, and SO2 addition) and tannic acid addition at bottling in Cabernet Sauvignon, Delaware, and Noble blush wines stored at 16 and 37C were evaluated. Prefermentation treatments did not affect red color. Browning differences were observed in Cabernet Sauvignon but not in Delaware and Noble wines. In blush wines from all cultivars, as tannic acid levels increased, browning and red color increased. The prefermentation treatments can be used to minimize color degradation in the cultivars evaluated. [source] Characterization of the ,-Glucosidase Activity Produced by Enological Strains of Non-Saccharomyces YeastsJOURNAL OF FOOD SCIENCE, Issue 8 2003R. R. Cordero Otero ABSTRACT: The ,-glucosidase activities of 20 wine-related non- Saccharomyces yeasts were quantified, characterized, and assessed for their efficiency in releasing aroma-enhancing compounds during the winemaking process. Of these enzymatic activities, the ,-glucosidase activity of Debaryomyces pseudopolymorphus revealed the most suitable combination of properties in terms of functionality at wine pH, resistance to wine-associated inhibitory compounds (glucose, ethanol, and sulfur dioxide), high substrate affinity, and large aglycone-substrate recognition. Its potential as a wine aroma-enhancing enzyme was confirmed by the significantly increasing concentrations of free volatiles (citronellol, nerol, and geraniol) during the fermentation of Chardonnay juice inoculated with both D. pseudopolymorphus and a widely used commercial starter culture strain of Saccharomyces cerevisiae, VIN13. [source] Development of an electrochemical cell for efficient hydrogen production through the IS processAICHE JOURNAL, Issue 8 2004Mikihiro Nomura Abstract The Bunsen reaction (SO2 + I2 + 2H2O = H2SO4 + 2HI) was examined by an electrochemical cell featuring a cation-exchange membrane as the separator, using sulfuric acid dissolving sulfur dioxide as the anolyte and hydriodic acid dissolving iodine as the catholyte. In galvanostatic electrolysis, the molality of H2SO4 in the anolyte and that of HI in the catholyte were increased up to 17.8 and 14.9 mol kgH2O,1, respectively. These concentrations were far higher than those that were obtained by the Bunsen reaction carried out in the presence of a large amount of iodine (such as I2/HI = 4). I2 concentration after the concentration procedure was at I2/HI = 0.95, which is lower than the reported value. I2 is one of the recycling agents in the IS process. HI and H2SO4 were successfully concentrated under low I2 concentration. The concentration of HI agreed with the calculated value, based on the amount of electricity consumed, indicating high current efficiency. Heat/mass balance using this type of electrochemical cell through the IS process is discussed for evaluation of the reactor. The thermal efficiency to produce hydrogen was calculated at 42.1%, without heat recovery for electricity, by optimizing HI and H2SO4 concentrations after application of the electrochemical cell. © 2004 American Institute of Chemical Engineers AIChE J, 50: 1991,1998, 2004 [source] Air pollution: A half century of progressAICHE JOURNAL, Issue 6 2004John H. Seinfeld Abstract In the 50 years since the air pollution episodes of Donora, PA and London, U.K., a great deal of progress has been made in understanding the nature and sources of air pollution and the atmospheric transport and transformation of pollutants. Also, many significant technological advances in air pollution control equipment, such as the automobile exhaust gas catalytic converter, have led to effective reduction of emissions from a variety of major pollution sources. Finally, remarkable developments in instrumentation for sampling the trace species in the atmosphere have been and continue to be made. Relatively less progress has been made in understanding the biological mechanisms by which pollutants lead to human injury and mortality. In this review the focus is on the extraordinary progress that has been made over the last half century in understanding the atmospheric nature and behavior of pollutants, both gaseous and particulate. A major breakthrough was the determination of the gas-phase chemistry of both the natural and polluted atmosphere, chemistry that leads to the formation of ozone and a vast array of oxidized molecules. The mechanisms of the oxidation of atmospheric sulfur dioxide, one of the main primary pollutants, were elucidated. Finally, the chemistry, physics, and optics of atmospheric particulate matter (aerosols) have been laid open by many stunning research achievements. Whereas 50 years ago air pollution was thought to be confined to the area around a city, it is now recognized that species emitted on one continent frequently find their way to other continents. Strategies for dealing with a truly global atmospheric backyard now represent a major challenge. © 2004 American Institute of Chemical Engineers AIChE J, 50:1096,1108, 2004 [source] Scrubbing of fly-ash laden SO2 in modified multistage bubble column scrubberAICHE JOURNAL, Issue 9 2002B. C. Meikap The emission of SO2 from various chemical industries is associated with particulate (fly-ash), mostly concentrations of particulate laden sulfur dioxide in and around these plants overshoot the danger point. Prediction of fly-ash laden SO2 removal efficiency is very important for the selection of pollution control equipment. Experimental investigations were conducted on the scrubbing of fly-ash laden SO2 in the modified multistage bubble column scrubber using water. Experimental results show that almost zero penetration (100% removal efficiency) of fly-ash laden SO2 can be achieved in this system. A correlation was developed for predicting the percentage collection efficiency of sulfur dioxide in the presence of fly-ash. Experimental results agreed excellently with the correlation. Enhancement of SO2 collection due to the presence of fly-ash was also quantified. [source] Preparation and characterization of a customized cellulose acetate butyrate dispersion for controlled drug deliveryJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 6 2002Siva Vaithiyalingam Abstract The purpose of the present experiment was to prepare and characterize the aqueous-based pseudolatex system of cellulose acetate butyrate (CAB) for controlled drug delivery. Aqueous pseudolatex systems are advantageous over organic-based coating systems because these systems are devoid of criteria pollutants such as carbon monoxide, nitrogen oxides, nonmethane volatile organic compounds, and sulfur dioxide. Pseudolatex was prepared with CAB and polyvinyl alcohol (stabilizer) by a polymer emulsification technique. The stability of pseudolatex was evaluated. Particle size was measured and rheological experiments were conducted. The glass transition temperature, microscopic free volume, permeation coefficient, and mechanical properties of plasticized pseudolatex films were estimated. Surface roughness of coating on inert Nu-Pareil® beads (Ingredient Technology Corp., Mahwah, NJ) was measured as a function of coating weight gain. The CAB Pseudolatex was found to be stabilized by steric forces. From intrinsic viscosity, the thickness of the stabilization layer was estimated. An increase in polymeric particles proportionately decreased the thickness of the stabilization layer. All the essential properties of a coating membrane such as microscopic free-volume fraction, permeability coefficient, mechanical properties, and glass transition temperature were fairly controllable as a function of plasticizer concentration. The pseudolatex dispersion of CAB was stable with negligible sedimentation volume and a particle size of 300 nm. Because CAB is water insoluble and non-ionizable, this pseudolatex can be used for pH-independent coating. The films obtained were strong and flexible for controlled drug delivery applications. Coating with the CAB dispersion reduced the surface roughness of beads but it remained stable as a function of increase in coating weight gain. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:1512,1522, 2002 [source] The synergetic effect of plasma and catalyst on simultaneous removal of SO2 and NOxASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2010Jun Han Abstract For the requirements of nitric oxide(NOx) and sulfur dioxide(SO2) removal in coal-fired power plant, a new nonthermal plasma system combined with catalyst was developed. Moreover, the effect of parameters such as temperature, atmosphere, residence time and additives (NH3 and methanol) on NOx (NO and NO2) and SO2 conversion rate was also experimentally evaluated. The results indicated that the new system could greatly promote the NOx conversion rate. As for SO2, the new system only had a slight influence. High temperature suppressed the NO oxidization and slightly promoted the SO2 oxidation. The long residence time was beneficial to the NOx and SO2 oxidization. In the absence of water, the additive of NH3 can improve NO, NOx and SO2 oxidization rate due to the reactions between NH3 and NOx or SO2. Contrary to NH3, methanol had a negative effect on NOx and SO2 oxidization. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] Principles for Utilization of Seawater in the Flue-Gas Desulfurization ProcessASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2001Tong Yao The Flake-Hydro Process (SWFGD) is a flue gas desulfurization method in which sea water is used for absorption of sulfur dioxide. Shenzhen West Power Plant Unit 4 (300MW) imported this technology from Norway and installed SWFGD system. At present, the operational situation is good. All performance guarantees are secured. Shenzhen Energy Environmental Engineering Co. Ltd, also takes responsibility for monitoring and study of key techniques. [source] Wine bottle closures: physical characteristics and effect on composition and sensory properties of a Semillon wine 1.AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 2 2001Performance up to 20 months post-bottling Abstract A Semillon wine was bottled using 14 different closures: a screw-cap type, two grades of conventional natural cork, two ,technical cork' closures (natural cork with a synthetic component), and 9 closures manufactured from synthetic polymer material. Closure performance was evaluated for physical aspects (e.g. extraction force and energy, change in closure diameter, and ease of closure reinsertion), and for wine composition and sensory properties. Wine under the screw cap closure retained the greatest concentration of sulfur dioxide (SO2) and ascorbic acid and had the slowest rate of browning. For other closures the trend of SO2 loss relative to the screw cap closure was apparent from an early stage of testing, and was most evident in the group of synthetic closures, intermediate in the conventional corks, and least evident in the technical cork closures. The loss of SO2 was in general highly correlated with an increase in wine browning (OD420) and the concentration of SO2 in the wine at six months was a strong predictor of future browning in the wine, particularly after eighteen months. Neither the concentration of dissolved oxygen at bottling (0.6,3.1 mg/L), nor the physical closure measures were predictors of future browning. For several closures upright storage tended to accelerate loss of SO2 from the wine, but in many cases this effect was marginal. The closures differed widely in regard to physical characteristics, and in general synthetic corks appeared least ,consumer-friendly' in terms of extraction forces, energies, and ease of closure re-insertion, but there was a trend for natural cork closures to exhibit larger variability in physical characteristics than technical cork and synthetic closures. Sensory analysis indicated large differences in wine flavour properties, with closures which tended to result in the best retention of free SO2 having wine sensory scores for ,citrus' that were generally high whilst scores for the attributes ,developed'/,oxidised' were low. The situation was reversed for wine under closures that performed poorly in the retention of free SO2. It was found that below a critical level of free SO2 remaining in the wine, closures exhibited substantially higher ,oxidised' aroma. Whilst trichloroanisole-type (TCA) taint was a noticeable problem for some cork and technical cork closures, any plastic-type taint appeared not to be a problem with most synthetic closures. [source] Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologiesBIOTECHNOLOGY PROGRESS, Issue 3 2009Rajeev Kumar Abstract Adsorption of cellulase on solids resulting from pretreatment of poplar wood by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid (DA), flowthrough (FT), lime, and sulfur dioxide (SO2) and pure Avicel glucan was measured at 4°C, as were adsorption and desorption of cellulase and adsorption of ,-glucosidase for lignin left after enzymatic digestion of the solids from these pretreatments. From this, Langmuir adsorption parameters, cellulose accessibility to cellulase, and the effectiveness of cellulase adsorbed on poplar solids were estimated, and the effect of delignification on cellulase effectiveness was determined. Furthermore, Avicel hydrolysis inhibition by enzymatic and acid lignin of poplar solids was studied. Flowthrough pretreated solids showed the highest maximum cellulase adsorption capacity (,solids = 195 mg/g solid) followed by dilute acid (,solids = 170.0 mg/g solid) and lime pretreated solids (,solids = 150.8 mg/g solid), whereas controlled pH pretreated solids had the lowest (,solids = 56 mg/g solid). Lime pretreated solids also had the highest cellulose accessibility (,cellulose = 241 mg/g cellulose) followed by FT and DA. AFEX lignin had the lowest cellulase adsorption capacity (,lignin = 57 mg/g lignin) followed by dilute acid lignin (,lignin = 74 mg/g lignin). AFEX lignin also had the lowest ,-glucosidase capacity (,lignin = 66.6 mg/g lignin), while lignin from SO2 (,lignin = 320 mg/g lignin) followed by dilute acid had the highest (301 mg/g lignin). Furthermore, SO2 followed by dilute acid pretreated solids gave the highest cellulase effectiveness, but delignification enhanced cellulase effectiveness more for high pH than low pH pretreatments, suggesting that lignin impedes access of enzymes to xylan more than to glucan, which in turn affects glucan accessibility. In addition, lignin from enzymatic digestion of AFEX and dilute acid pretreated solids inhibited Avicel hydrolysis less than ARP and flowthrough lignin, whereas acid lignin from unpretreated poplar inhibited enzymes the most. Irreversible binding of cellulase to lignin varied with pretreatment type and desorption method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologiesBIOTECHNOLOGY PROGRESS, Issue 2 2009Rajeev Kumar Abstract Comparative data is presented on glucose and xylose release for enzymatic hydrolysis of solids produced by pretreatment of poplar wood by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough (FT), lime, and sulfur dioxide (SO2) technologies. Sugar solubilization was measured for times of up to 72 h using cellulase supplemented with ,-glucosidase at an activity ratio of 1:2, respectively, at combined protein mass loadings of 5.8,116 mg/g of glucan in poplar wood prior to pretreatment. In addition, the enzyme cocktail was augmented with up to 11.0 g of xylanase protein per gram of cellulase protein at combined cellulase and ,-glucosidase mass loadings of 14.5 and 29.0 mg protein (about 7.5 and 15 FPU, respectively)/g of original potential glucose to evaluate cellulase,xylanase interactions. All pretreated poplar solids required high protein loadings to realize good sugar yields via enzymatic hydrolysis, and performance tended to be better for low pH pretreatments by dilute sulfuric acid and sulfur dioxide, possibly due to higher xylose removal. Glucose release increased nearly linearly with residual xylose removal by enzymes for all pretreatments, xylanase leverage on glucan removal decreased at high cellulase loadings. Washing the solids improved digestion for all pretreatments and was particularly beneficial for controlled pH pretreatment. Furthermore, incubation of pretreated solids with BSA, Tween 20, or PEG6000 prior to adding enzymes enhanced yields, but the effectiveness of these additives varied with the type of pretreatment. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologiesBIOTECHNOLOGY PROGRESS, Issue 2 2009Charles E. Wyman Abstract Through a Biomass Refining Consortium for Applied Fundamentals and Innovation among Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, Texas A&M University, the University of British Columbia, and the University of California at Riverside, leading pretreatment technologies based on ammonia fiber expansion, aqueous ammonia recycle, dilute sulfuric acid, lime, neutral pH, and sulfur dioxide were applied to a single source of poplar wood, and the remaining solids from each technology were hydrolyzed to sugars using the same enzymes. Identical analytical methods and a consistent material balance methodology were employed to develop comparative performance data for each combination of pretreatment and enzymes. Overall, compared to data with corn stover employed previously, the results showed that poplar was more recalcitrant to conversion to sugars and that sugar yields from the combined operations of pretreatment and enzymatic hydrolysis varied more among pretreatments. However, application of more severe pretreatment conditions gave good yields from sulfur dioxide and lime, and a recombinant yeast strain fermented the mixed stream of glucose and xylose sugars released by enzymatic hydrolysis of water washed solids from all pretreatments to ethanol with similarly high yields. An Agricultural and Industrial Advisory Board followed progress and helped steer the research to meet scientific and commercial needs. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Oral cleft defects and maternal exposure to ambient air pollutants in New Jersey,BIRTH DEFECTS RESEARCH, Issue 4 2010Elizabeth G. Marshall BACKGROUND Evidence links exposure to ambient air pollution during pregnancy, particularly gaseous pollutants and particulate matter, to an increased risk of adverse reproductive outcomes though the results for birth defects have been inconsistent. METHODS We compared estimated exposure to ambient air pollutants during early pregnancy among mothers of children with oral cleft defects (cases) to that among mothers of controls, adjusting for available risk factors from birth certificates. We obtained ambient air pollutant data from air monitoring sites in New Jersey for carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), particulate matter <10 ,m in aerodynamic diameter (PM10) and particulate matter <2.5 ,m in aerodynamic diameter (PM2.5). We used values from the nearest monitor (within 40 km of the residence at birth) for controls, cleft lip with or without cleft palate (CLP) and cleft palate only (CPO). RESULTS Based on logistic regression analyses for each contaminant and all contaminants together, there were no consistent elevated associations between selected air pollutants and cleft malformations. Quartile of CO concentration showed a consistent protective association with CPO (p < 0.01). For other contaminants, confidence intervals (95%) of the odds ratios for some quartiles excluded one. CLP showed limited evidence of an association with increasing SO2 exposure while CPO showed weak associations with increasing O3 exposure. CONCLUSION There was little consistent evidence associating cleft malformations with maternal exposure to ambient air pollutants. Evaluating particular pollutants or disease subgroups would require more detailed measurement of exposure and classification of cleft defects. Birth Defects Research (Part A), 2010. © 2010 Wiley-Liss, Inc. [source] |