Home About us Contact | |||
Sulfonated Poly (sulfonated + poly)
Selected AbstractsEffect of addition of organic microspheres on proton conductivity property of sulfonated poly(arylene ether sulfone) membraneJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Cui Liang Abstract Sulfonated poly(arylene ether sulfone) (SPAES)/polystyrene(PS) and SPAES/polystyrene sulfonic acid (PSSA) composite membranes were studied for a proton-exchange membrane used in a fuel cell. PS microspheres were synthesized by emulsion polymerization. PSSA microspheres with 5.3 mmol/g ion-exchange capacity (IEC) were prepared by sulfonation of PS microspheres. The composite membranes were prepared by solution casting. SPAES/PSSA composite membranes showed higher proton conductivity than a SPAES membrane because of the IEC improved by adding PSSA. Although the addition of PSSA also brought about the increase of a methanol permeability, the proton/methanol selectivity defined as the ratio of the proton conductivity to the methanol permeability was improved at low humidity by adding 5 wt % of PSSA microspheres. Differential scanning calorimetry results indicated that the amount of free water varied in the cases of the addition of the two kinds of organic microspheres. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Sulfonated poly(ether imide) and poly(ether sulfone) blends for direct methanol fuel cells.JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008Abstract This investigation examines characteristics of sulfonated polyether imides (SPEI) with various ion exchange capacity values (IEC) and completes previous work to enable its blends to be adopted as polyelectrolyte in direct methanol fuel cells (DMFC). Polyether imides (PEI) were sulfonated by using chlorosulfonic acid as the sulfonating agent and chloroform as the solvent. The structure of SPEI was observed by FTIR and 1H NMR. The sulfonate or sulfonic acid content of the polymers, expressed as a number per repeat unit of the polymer, was accurately determined by elemental analysis and conductometric titration. Physical properties such as solubility, intrinsic viscosities, thermal stability, and glass transition temperature (Tg) were studied for both PEI and SPEI. TGA-FTIR verified that sulfonic groups, attached to the aromatic ring in the PEI backbone, are split at 230,350°C, but the main-chain splitting temperature of SPEI is similar to that of pure polymer. The sulfonated samples exhibited good solubilities and increased glass transition temperatures (Tg values) as degree of sulfonation (DS) increased; two Tg values were detected when IEC was sufficiently high. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Sulfonated poly(ether sulfone)s with binaphthyl units as proton exchange membranes for fuel cell applicationJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2009Kazuya Matsumoto Abstract Sulfonated poly(ether sulfone)s containing binaphthyl units (BNSHs) were successfully prepared for fuel cell application. BNSHs, which have very simple structures, were easily synthesized by postsulfonation of poly(1,1,-dinaphthyl ether phenyl sulfone)s and gave tough, flexible, and transparent membranes by solvent casting. The BNSH membranes showed low water uptake compared to a typical sulfonated poly(ether ether sulfone) (BPSH-40) membrane with a similar ion exchange capacity (IEC) value and water insolubility, even with a high IEC values of 3.19 mequiv/g because of their rigid and bulky structures. The BNSH-100 membrane (IEC = 3.19 mequiv/g) exhibited excellent proton conductivity, which was comparable to or even higher than that of Nafion 117, over a range of 30,95% relative humidity (RH). The excellent proton conductivity, especially under low RH conditions, suggests that the BNSH-100 membrane has excellent proton paths because of its high IEC value, and water insolubility due to the high hydrophobicity of the binaphthyl structure. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5827,5834, 2009 [source] Synthesis and characterization of postsulfonated poly(arylene ether sulfone) diblock copolymers for proton exchange membranesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2009Shogo Takamuku Abstract Sulfonated poly(arylene ether sulfone) diblock copolymers were studied through the postsulfonation process. Two kinds of hydrophobic oligomers with a molecular weight of 20 kDa were prepared in advance as block sequences and then coupled together to obtain diblock copolymers. One oligomer was synthesized from bis(4-hydroxyphenyl) sulfone (BHPS) and 4,4,-difluorodiphenyl sulfone (DFDPS), which was thought to be incapable of postsulfonation. The other oligomer was synthesized from hydroquinone (HQ) and 4,4,-dichlorodiphenyl sulfone (DCDPS), which successfully proceeded to a hydrophilic sequence as a result of sulfonation onto the HQ moiety after the coupling reaction. Consequently, a diblock copolymer with high molecular weight was obtained; although its intrinsic viscosity was too low to form a tough membrane because of its high rigidity and high crystallinity. Therefore, the use of decafluorobiphenyl (10F) as a termination reagent was investigated with the aim of achieving higher coupling reactivity and a kinky property. As a result, a sulfonated diblock copolymer was successfully obtained with sufficient molecular weight and intrinsic viscosity to form the membrane, as well as with adequate thermal properties. It was observed that proton conductivity, water uptake, and the water diffusion coefficient increased with higher ion exchange capacity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 700,712, 2009 [source] Preparation of highly H+ permeable sulfonated poly(ether ether ketone) cation exchange membranes and their applications in electro-generation of thioglycolic acidPOLYMER INTERNATIONAL, Issue 7 2009Xuehong Huang Abstract BACKGROUND: Sulfonated poly(ether ether ketone) (SPEEK) was successfully synthesized from sulfonated 4,4,-difluorobenzophenone, 4,4,-difluorobenzophenone and bisphenol A. SPEEK cation exchange membranes were prepared by the casting method. The composition and morphology of SPEEK were characterized using Fourier transform infrared and 1H NMR spectroscopies, respectively. The ion exchange capacity (IEC), water uptake and degree of swelling of the membranes were also investigated. SPEEK120 was used as a separator in an electrolysis cell to produce thioglycolic acid (TGA). RESULTS: SPEEK polymerization was carried out at 145 and 175 °C for 10 h. The IEC of the SPEEK membranes was measured as 0.24,2.02 meq g,1 and the water uptake as 2.26,26.45%. The degree of swelling of the membranes was 1.71,15.28%. TGA was effectively prepared by electro-reduction of dithioglycolic acid. The current efficiency peaked at 58.31% at room temperature with a current density of 15 mA cm,2. CONCLUSION: SPEEK120 membrane shows good dimensional stability and H+ permeability. Compared to the traditional metal-reduction method, the current electro-reduction technique avoids the use of zinc powder and so reduces environmental pollution. Copyright © 2009 Society of Chemical Industry [source] Sulfonated poly(phenylene oxide) membranes as promising materials for new proton exchange membranesPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 5 2006Shifang Yang Abstract Poly(phenylene oxide) (PPO) was sulfonated to different ion exchange capacities (IECs) using chlorosulfonic acid as the sulfonating agent. Tough, ductile films were successfully cast from sulfonated PPO (SPPO) solutions in N -methyl-2-pyrrolidone or N,N -dimethylformamide. The obtained membranes had good thermal stability revealed by thermogravimetric analysis (TGA). Compared with an unsulfonated PPO membrane, the hydrophilicity and water uptake of the SPPO membranes were enhanced, as shown by reduced contact angles with water. The tensile test indicated that the SPPO membranes with IEC ranging from 0.77 to 2.63,meq/g were tough and strong at ambient conditions and still maintained adequate mechanical strength after immersion in water at room temperature for 24,hr. The results of wide-angle X-ray diffraction (WAXD) showed amorphous structures for PPO and SPPO while the peak intensity decreased after sulfonation. The proton conductivity of these SPPO membranes was measured as 1.16,×,10,2,S/cm at ambient temperature, which is comparable to that of Nafion 112 at similar conditions and in the range needed for high-performance fuel cell proton exchange membranes. Copyright © 2006 John Wiley & Sons, Ltd. [source] Effect of addition of organic microspheres on proton conductivity property of sulfonated poly(arylene ether sulfone) membraneJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Cui Liang Abstract Sulfonated poly(arylene ether sulfone) (SPAES)/polystyrene(PS) and SPAES/polystyrene sulfonic acid (PSSA) composite membranes were studied for a proton-exchange membrane used in a fuel cell. PS microspheres were synthesized by emulsion polymerization. PSSA microspheres with 5.3 mmol/g ion-exchange capacity (IEC) were prepared by sulfonation of PS microspheres. The composite membranes were prepared by solution casting. SPAES/PSSA composite membranes showed higher proton conductivity than a SPAES membrane because of the IEC improved by adding PSSA. Although the addition of PSSA also brought about the increase of a methanol permeability, the proton/methanol selectivity defined as the ratio of the proton conductivity to the methanol permeability was improved at low humidity by adding 5 wt % of PSSA microspheres. Differential scanning calorimetry results indicated that the amount of free water varied in the cases of the addition of the two kinds of organic microspheres. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Synthesis of Phenyl-13C6-etheneJOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 11 2001Elizabeth M. Zippi Abstract In an effort to prepare an improved carbon-rich target material for the accelerator production of 13N labelled ammonia for use in positron emission tomography (PET), sulfonated poly(styrene/divinylbenzene) has been evaluated. The preparation of this target material using naturally abundant carbon-12 compounds was investigated in an effort to optimize conditions for the preparation of the analogous carbon-13 target material which may provide a cost-effective method for producing nitrogen-13 labelled ammonia via proton irradiation. As part of this study, phenyl-13C6-ethene was synthesized in three steps starting from benzene-13C6. Copyright © 2001 John Wiley & Sons, Ltd. [source] Theoretical studies on structural and electrical properties of PES/SPEEK blend nanofiltration membraneAICHE JOURNAL, Issue 8 2009A. F. Ismail Abstract Polyethersulfone (PES) nanofiltration membranes were prepared using a simple dry-jet wet spinning technique with different contents of sulfonated poly(ether ether ketone) (SPEEK) ranging from 0 to 4 wt %. The structural parameters (rp and Ak/,x) and electrostatic properties (, and X) of the blend membranes were deduced by employing the combination of irreversible thermodynamic model, steric hindrance pore (SHP) model, and Teorell-Meyer-Sievers (TMS) model. The modeling results obtained have been analyzed and discussed. The mean pore radius and pore size distribution of the blends were also determined based on the theoretical models. The results showed that pore radius increased with increasing the concentration of SPEEK from 0 to 2 wt % but decreased with a further increase in SPEEK content. The water flux, however, showed a systematically increase with increasing SPEEK content. The SPEEK also showed significant effect on membrane electrical properties. Both effective charge density and ratio of effective charge density to electrolyte solution increased with increasing concentration of SPEEK in the dope solution, reaching a value of ,21.02 and ,2.29, respectively. The pore radius which was determined by using different transport models has also been analyzed and discussed. It is found that the addition of SPEEK into dope solution is one of the paramount parameters in developing the negatively charged nanofiltration membrane with enhanced water flux while retaining the pore radius in the nanometer range. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Sulfonated polybenzimidazoles: Proton conduction and acid,base crosslinkingJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2010Owen D. Thomas Abstract A series of soluble, benzimidazole-based polymers containing sulfonic acid groups (SuPBI) has been synthesized. SuPBI membranes resist extensive swelling in water but are poor proton conductors. When blended with high ion exchange capacity (IEC) sulfonated poly(ether ether ketone) (SPEEK), a polymer that has high proton conductivity but poor mechanical integrity, ionic crosslinks form reducing the extent of swelling. The effect of sulfonation of PBI on crosslinking in these blends was gauged through comparison with nonsulfonated analogs. Sulfonic acid groups present in SuPBI compensate for acid groups involved in crosslinking, thereby increasing IEC and proton conductivity of the membrane. When water uptake and proton conductivity were compared to the IEC of blends containing either sulfonated or nonsulfonated PBI, no noticeable distinction between PBI types could be made. Comparisons were also made between these blends and pure SPEEK membranes of similar IEC. Blend membranes exhibit slightly lower maximum proton conductivity than pure SPEEK membranes (60 vs. 75 mS cm,1) but had significantly enhanced dimensional stability upon immersion in water, especially at elevated temperature (80 °C). Elevated temperature measurements in humid environments show increased proton conductivity of the SuPBI membranes when compared with SPEEK-only membranes of similar IEC (c.f. 55 for the blend vs. 42 mS cm,1 for SPEEK at 80 °C, 90% relative humidity). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3640,3650, 2010 [source] Synthesis and properties of new fluorinated polymers bearing pendant imidazole groups for fuel cell membranes operating over a broad relative humidity rangeJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 1 2010Guillaume Frutsaert Abstract New alternating copolymers comprising a chlorotrifluorinated backbone and imidazole-terminated pendant ethylene oxide groups have been prepared with a view to their use as a component of proton-conducting membranes in polymer electrolyte fuel cells. A vinyl ether containing an imidazole (Imi) function protected by a benzyl group (BVI) was first synthesized in a three-step reaction. It was then copolymerized in solution with chlorotrifluoroethylene (CTFE) by conventional radical copolymerization leading to alternating poly(BVI-alt-CTFE) copolymers in good yields. Deprotection of the benzyl group under hydrogen produced a chlorotrifluorinated poly(Imi-alt-CTFE) copolymer. The polymer was subsequently used to form blend membranes with sulfonated poly(ether ether ketone) (sPEEK). The conductivity of blend membranes of poly (Imi-alt-CTFE) with sPEEK lies in the range of 4,10 mS cm,1 at 40,70 °C and, for blend membranes rich in poly(Imi-alt-CTFE), is little dependent on relative humidity between 30 and 100%. It is surmised that the polymer and membrane composition favor microstructural phase separation into chlorotrifluorinated polymer backbone domains and regions in which imidazole groups are clustered. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 223,231, 2010 [source] Sulfonated poly(ether sulfone)s with binaphthyl units as proton exchange membranes for fuel cell applicationJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2009Kazuya Matsumoto Abstract Sulfonated poly(ether sulfone)s containing binaphthyl units (BNSHs) were successfully prepared for fuel cell application. BNSHs, which have very simple structures, were easily synthesized by postsulfonation of poly(1,1,-dinaphthyl ether phenyl sulfone)s and gave tough, flexible, and transparent membranes by solvent casting. The BNSH membranes showed low water uptake compared to a typical sulfonated poly(ether ether sulfone) (BPSH-40) membrane with a similar ion exchange capacity (IEC) value and water insolubility, even with a high IEC values of 3.19 mequiv/g because of their rigid and bulky structures. The BNSH-100 membrane (IEC = 3.19 mequiv/g) exhibited excellent proton conductivity, which was comparable to or even higher than that of Nafion 117, over a range of 30,95% relative humidity (RH). The excellent proton conductivity, especially under low RH conditions, suggests that the BNSH-100 membrane has excellent proton paths because of its high IEC value, and water insolubility due to the high hydrophobicity of the binaphthyl structure. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5827,5834, 2009 [source] Synthesis and characterization of sulfonated poly(benzoxazole ether ketone)s by direct copolymerization as novel polymers for proton-exchange membranesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2007Jinhuan Li Abstract A new series of sulfonated poly(benzoxazole ether ketone)s (SPAEKBO-X) were prepared by the aromatic nucleophilic polycondensation of 4,4,-(hexafluoroisopropylidene)-diphenol with 2,2,-bis[2-(4-fluorophenyl)benzoxazol-6-yl]hexafluoropropane and sodium 5,5,-carbonylbis-2-fluorobenzenesulfonate in various ratios. Fourier transform infrared and 1H NMR were used to characterize the structures and sulfonic acid contents of the copolymers. The copolymers were soluble in N -methyl-2-pyrrolidinone, N,N -dimethylacetamide, and N,N -dimethylformamide and could form tough and flexible membranes. The protonated membranes were thermally stable up to 320 °C in air. The water uptake, hydrolytic and oxidative stability, and mechanical properties were evaluated. At 30,90 °C and 95% relative humidity, the proton conductivities of the membranes increased with the sulfonic acid content and temperature and almost reached that of Nafion 112. At 90,130 °C, without external humidification, the conductivities increased with the temperature and benzoxazole content and reached above 10,2 S/cm. The SPAEKBO-X membranes, especially those with high benzoxazole compositions, possessed a large amount of strongly bound water (>50%). The experimental results indicate that SPAEKBO-X copolymers are promising for proton-exchange membranes in fuel cells, and their properties might be tailored by the adjustment of the copolymer composition for low temperatures and high humidity or for high temperatures and low humidity; they are especially promising for high-temperature applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2273,2286, 2007 [source] Synthesis, stability and electrocatalytic activity of polymer-stabilized monometallic Pt and bimetallic Pt/Cu core,shell nanoparticlesPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 6 2008D. N. Muraviev Abstract In this paper we report the results obtained for inter-matrix synthesis (IMS) and characterization of monometallic and bimetallic polymer-stabilized metal nanoparticles (PSMNPs). The IMS procedure is based on the use of appropriately functionalized polymeric membranes as nanoreactors, which allows both synthesis and characterization of the composition and morphology of PSMNPs inside the membranes. The membranes were prepared by using noncrosslinked sulfonated poly(etherether ketone) (SPEEK) of desired degree of sulfonation, which provided insolubility of the polymer in water and solubility in some organic solvents (e.g. dimethylformamide). The IMS of PSMNPs involved loading of the membrane with metal ions or complexes followed by metal reduction inside the membrane resulting in the formation of either monometallic (Cu or Pt) or bimetallic (Pt/Cu) PSMNPs with core,shell structure. The electrocatalytic activity of the PSMNPs was estimated by measuring the electrochemical response of amperometric sensors prepared by using SPEEK-Pt-PSMNP and SPEEK-Pt/Cu-PSMNP nanocomposite membranes as sensing elements to detect H2O2. At the same values of Pt loading the response of Pt/Cu-PSMNP-based sensors appeared to be far higher than that of sensors modified with Pt-PSMNP membranes. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Melting behavior and crystallization kinetics of sulfonated poly(butylene isophthalate)POLYMER ENGINEERING & SCIENCE, Issue 7 2002Nadia Lotti The melting behavior and the crystallization kinetics of sulfonated poly(butylene isophthalate) random copolymers were investigated by means of differential scanning calorimetry. The multiple endotherms, commonly observed in polyesters, were found to be influenced both by composition and crystallization temperature. By applying the Hoffman-Weeks method, the equilibrium melting temperatures of the copolymers under investigation were obtained. The presence of a crystal-amorphous interphase was evidenced and its amount was found to increase as the sulfonated unit content was increased. Isothermal melt crystallization kinetics of the sample containing the lowest amount of sulfonated units was analyzed according to the Avrami treatment. The introduction of such units was found to decrease the overall crystallization rate of poly(butylene isophthalate). Values of Avrami's exponent n close to 3 were obtained, independently of crystallization temperature, in agreement with a crystallization process originating from predetermined nuclei and characterized by three-dimensional spherulitic growth. [source] Preparation of highly H+ permeable sulfonated poly(ether ether ketone) cation exchange membranes and their applications in electro-generation of thioglycolic acidPOLYMER INTERNATIONAL, Issue 7 2009Xuehong Huang Abstract BACKGROUND: Sulfonated poly(ether ether ketone) (SPEEK) was successfully synthesized from sulfonated 4,4,-difluorobenzophenone, 4,4,-difluorobenzophenone and bisphenol A. SPEEK cation exchange membranes were prepared by the casting method. The composition and morphology of SPEEK were characterized using Fourier transform infrared and 1H NMR spectroscopies, respectively. The ion exchange capacity (IEC), water uptake and degree of swelling of the membranes were also investigated. SPEEK120 was used as a separator in an electrolysis cell to produce thioglycolic acid (TGA). RESULTS: SPEEK polymerization was carried out at 145 and 175 °C for 10 h. The IEC of the SPEEK membranes was measured as 0.24,2.02 meq g,1 and the water uptake as 2.26,26.45%. The degree of swelling of the membranes was 1.71,15.28%. TGA was effectively prepared by electro-reduction of dithioglycolic acid. The current efficiency peaked at 58.31% at room temperature with a current density of 15 mA cm,2. CONCLUSION: SPEEK120 membrane shows good dimensional stability and H+ permeability. Compared to the traditional metal-reduction method, the current electro-reduction technique avoids the use of zinc powder and so reduces environmental pollution. Copyright © 2009 Society of Chemical Industry [source] |