Home About us Contact | |||
Study Organisms (study + organism)
Selected AbstractsCorrelated morphological and colour differences among females of the damselfly Ischnura elegansECOLOGICAL ENTOMOLOGY, Issue 3 2009JESSICA K. ABBOTT Abstract 1.,The female-limited colour polymorphic damselfly Ischnura elegans has proven to be an interesting study organism both as an example of female sexual polymorphism, and in the context of the evolution of colour polymorphism, as a model of speciation processes. 2.,Previous research suggests the existence of correlations between colour morph and other phenotypic traits, and the different female morphs in I. elegans may be pursuing alternative phenotypically integrated strategies. However, previous research on morphological differences in southern Swedish individuals of this species was only carried out on laboratory-raised offspring from a single population, leaving open the question of how widespread such differences are. 3.,The present study therefore analysed multi-generational data from 12 populations, investigating morphological differences between the female morphs in the field, differences in the pattern of phenotypic integration between morphs, and quantified selection on morphological traits. 4.,It was found that consistent morphological differences indeed existed between the morphs across populations, confirming that the previously observed differences were not simply a laboratory artefact. It was also found, somewhat surprisingly, that despite the existence of sexual dimorphism in body size and shape, patterns of phenotypic integration differed most between the morphs and not between the sexes. Finally, linear selection gradients showed that female morphology affected fecundity differently between the morphs. 5.,We discuss the relevance of these results to the male mimicry hypothesis and to the existence of potential ecological differences between the morphs. [source] Test of a developmental trade-off in a polyphenic butterfly: direct development favours reproductive outputFUNCTIONAL ECOLOGY, Issue 1 2008Bengt Karlsson Summary 1Evolutionary theory predicts that resource allocation decisions taken during development are adjusted to an organism's life-history. These decisions may have irreversible effects on body design and strong fitness consequences. Holometabolous insects that have a long expected life span typically postpone reproduction, and so are expected to allocate resources for somatic maintenance prior to investing in reproduction. In contrast, insects that have a short expected life span are expected to allocate relatively less to soma and more to reproduction. In support of this theory, an earlier investigation of resources allocated to soma vs. reproductive reserves in the comma butterfly, Polygonia c-album, revealed that short-lived females indeed allocate more resources to reproductive reserves as compared to longer lived females that hibernate before reproduction suggesting that short-lived females should have higher fecundity. 2Here we test this prediction, using the comma butterfly as our study organism. Depending on daylength and temperature this butterfly produces one of two morphs: (i) a light summer morph that reproduces directly after adult eclosion and has a short expected life span of a couple of weeks; or (ii) a darker winter morph that normally lives for 8,9 months before the onset of reproduction. Our test is based on experimental manipulation that allowed us to induce reproduction without prior hibernation in winter morph comma butterflies, and comparing lifetime fecundity among three groups: (i) directly reproducing summer morph commas; (ii) directly reproducing winter morph commas; and (iii) winter morph commas reproducing after overwintering. This protocol allowed us to tease apart trade-offs during development and the hibernation period. 3The results showed that the short-lived summer morph had a substantially higher fecundity (total number of eggs = 586 ± 19, mean ± SE) than the winter morph females manipulated to reproduce without hibernation (total number of eggs = 334 ± 42). We argue that this is a consequence of a resource allocation trade-off during early development observed in this species; females with a short expected life as adults allocate relatively more of their resources to reproductive parts and thereby reach a higher reproductive output compared to females predisposed for a long adult life. 4There was no significant difference in lifetime fecundity between winter morph females that did, or did not, hibernate before reproduction. This suggests that the cost of hibernation per se is small and hence corroborates our conclusion that the life-history implemented trade-off made during early development underlies the lower reproductive output of the winter morph butterflies. [source] Quantifying the evidence for ecological synergiesECOLOGY LETTERS, Issue 12 2008Emily S. Darling Abstract There is increasing concern that multiple drivers of ecological change will interact synergistically to accelerate biodiversity loss. However, the prevalence and magnitude of these interactions remain one of the largest uncertainties in projections of future ecological change. We address this uncertainty by performing a meta-analysis of 112 published factorial experiments that evaluated the impacts of multiple stressors on animal mortality in freshwater, marine and terrestrial communities. We found that, on average, mortalities from the combined action of two stressors were not synergistic and this result was consistent across studies investigating different stressors, study organisms and life-history stages. Furthermore, only one-third of relevant experiments displayed truly synergistic effects, which does not support the prevailing ecological paradigm that synergies are rampant. However, in more than three-quarters of relevant experiments, the outcome of multiple stressor interactions was non-additive (i.e. synergies or antagonisms), suggesting that ecological surprises may be more common than simple additive effects. [source] Herbivore and pathogen damage on grassland and woodland plants: a test of the herbivore uncertainty principleECOLOGY LETTERS, Issue 4 2002Stefan A. Schnitzer Researchers can alter the behaviour and ecology of their study organisms by conducting such seemingly benign activities as non-destructive measurements and observations. In plant communities, researcher visitation and measurement of plants may increase herbivore damage in some plant species while decreasing it in others. Simply measuring plants could change their competitive ability by altering the amount of herbivore damage that they suffer. Currently, however, there is only limited empirical evidence to support this `herbivore uncertainty principle' (HUP). We tested the HUP by quantifying the amount of herbivore and pathogen damage in 13 plant species (> 1400 individuals) at four different visitation intensities at Cedar Creek Natural History Area, Minnesota, USA. Altogether, we found very little evidence to support the HUP at any intensity of visitation. Researcher visitation did not alter overall plant herbivore damage or survival and we did not detect a significant visitation effect in any of the 13 species. Pathogen damage also did not significantly vary among visitation treatments, although there was some evidence that high visitation caused slightly higher pathogen damage. Based on our results, we question whether this phenomenon should be considered a `principle' of plant ecology. [source] Explaining isotope trophic-step fractionation: why herbivorous fish are differentFUNCTIONAL ECOLOGY, Issue 6 2007A. C. MILL Summary 1An assumed constant trophic fractionation of 15N/14N between consumer and diet (usually 3·4 for diet,muscle tissue differences) allows inferences to be made about feeding interactions and trophic level in food web studies. However, considerable variability surrounds this constant, which may conceal subtle differences about the trophodynamics of consumers. 2The feeding ecologies of herbivores and carnivores differ in terms of diet quality (in C : N terms) and food processing mechanisms, which may affect fractionation. 3We present a new model that explores how consumer feeding rates, excretion rates and diet quality determine the 15N/14N ratios in the consumer's tissues and hence influence the magnitude of trophic fractionation. 4Three herbivorous reef fish Acanthurus sohal, Zebrasoma xanthurum and Pomacentrus arabicus were chosen as study organisms. Empirical estimates of diet,tissue stable isotope fractionation were made in the field, and model parameters were derived from feeding observations and literature data. 5The trophic fractionation values of A. sohal, Z. xanthurum and P. arabicus were 4·69, 4·47 and 5·25, respectively, by empirical measurement, and 4·41, 4·30 and 5·68, respectively, by model, indicating that herbivores have a higher trophic fractionation than the currently accepted value of 3·4. 6The model was most sensitive to the excretion rate, which may differ between herbivores and carnivorous animals. This model is the first to determine stable isotope signatures of a consumer's diet mixture without applying a constant fractionation value. [source] Meta-analysis of transmitter effects on avian behaviour and ecologyMETHODS IN ECOLOGY AND EVOLUTION, Issue 2 2010Douglas G. Barron Summary 1. Researchers often attach transmitters and other devices to free-living birds without a clear understanding of potential deleterious consequences to their study organisms, and thus to their data. Studies investigating this topic have generally been limited to a single species or type of device. 2. To achieve a broader understanding we used a meta-analysis of 84 studies to ask: (1) Do devices have an overall effect on birds? (2) Which aspects of avian behaviour and ecology are affected? (3) What attributes of birds influence transmitter effects? (4) What attributes of devices influence their effects? (5) Are effects partially a consequence of capture and restraint? 3. We found a significant negative effect of devices on birds, both overall and for 8 of the 12 specific aspects analysed. The most substantial effects were that birds with devices had markedly increased energy expenditure and were much less likely to nest. 4. Effects were independent of attributes of the birds (sex, age, primary method of locomotion and body mass). We also found no evidence that proportionally heavier devices had greater effects, although researchers generally avoided using heavy devices. Breast-mounted and harness attachments increased device-induced behaviours such as preening, however, and the risk of device-induced mortality differed between attachment methods. 5. Other than foraging behaviours, no effects were a consequence of capture or restraint. 6.Synthesis and applications. We provide the first comprehensive evidence that transmitters and other devices negatively affect birds and may bias resulting data. Researchers should balance the benefits of using these techniques against potential costs to the birds and reliability of the data obtained. [source] |