Strike-slip Fault Zones (strike-slip + fault_zone)

Distribution by Scientific Domains

Selected Abstracts

Petroleum System of the Sufyan Depression at the Eastern Margin of a Huge Strike-slip Fault Zone in Central Africa

Abstract: The present paper mainly studies the petroleum system of the Sufyan Depression in the Muglad Basin of central Africa and analyzes its control of hydrocarbon accumulation. On the basis of comprehensive analysis of effective source rock, reservoir bed types and source,reservoir,seal assemblages, petroleum system theory has been used to classify the petroleum system of the Sufyan Depression. Vertically, the Sufyan Depression consists of two subsystems. One is an Abu Gabra subsystem as a self generating, accumulating and sealing assemblage. The other subsystem is composed of an Abu Gabra source rock, Bentiu channel sandstone reservoir and Darfur group shale seal, which is a prolific assemblage in this area. Laterally, the Sufyan Depression is divided into eastern and western parts with separate hydrocarbon generation centers more than 10 000 m deep. The potential of the petroleum system is tremendous. Recently, there has been a great breakthrough in exploration. The Sufyan C-1 well drilled in the central structural belt obtained high-yielding oil flow exceeding 100 tons per day and controlled geologic reserves of tens of millions of tons. The total resource potential of the Sufyan Depression is considerable. The central structural belt is most favorable as an exploration and development prospect. [source]

Major neotectonic features of eastern Marmara region, Turkey: development of the Adapazar,,Karasu corridor and its tectonic significance

nç Yi
Abstract Eastern Marmara region consists of three different morphotectonic units: Thrace,Kocaeli Peneplain (TKP) and Çamda,,Akçakoca Highland (ÇAH) in the north, and Armutlu,Almac,k Highland in the south of the North Anatolian Fault Zone (NAFZ). The geologic-morphologic data and seismic profiles from the Sakarya River offshore indicate that the boundary between the TKP in the west and ÇAH in the east is a previously unrecognized major NNE,SSW-trending strike-slip fault zone with reverse component. The fault zone is a distinct morphotectonic corridor herein named the Adapazar,,Karasu corridor (AKC) that runs along the Sakarya River Valley and extends to its submarine canyon along the southern margin of the Black Sea in the north. It formed as a transfer fault zone between the TKP and ÇAH during the Late Miocene; the former has been experiencing extensional forces and the latter compressional forces since then. East,West-trending segments of the NAFZ cuts the NE,SW-trending AKC and their activity has resulted in the formation of a distinct fault-bounded morphology, which is characterized by alternating E,W highlands and lowlands in the AKC. Furthermore, this activity has resulted in the downward motion of an ancient delta and submarine canyon of the Sakarya River in the northern block of the NAFZ below sea level so that the waters of the Black Sea invaded them. The NE,SW-trending faults in the AKC were reactivated with the development of the NAFZ in the Late Pliocene, which then caused block motions and microseismic activities throughout the AKC. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A. Billi
The deformation associated with a number of kilometre-scale strike-slip fault zones which cut through outcropping carbonate rocks in the Southern Apennines was investigated at regional and outcrop scales. These faults trend roughly east-west and were studied at the Gargano Promontory on the Adriatic Coast (in the Apulian foreland) and in the Matese Mountains, about 120 km to the west (within the Apenninic fold-and-thrust belt). The fault zones are 200,300 m wide and typically comprise a core surrounded by a damage zone. Within fault cores, fault rocks (gouges and cataclasites) typically occur along master slip planes; in damage zones, secondary slip planes and solution cleavage are the most important planar discontinuities. The protolith carbonates surrounding the fault zone at Gargano show little deformation, but they are fractured in the Matese Mountains as a result of an earlier thrust phase. Cleavage surfaces in the damage zone of the studied faults are interpreted to be fault-propagation structures. Our field data indicate that cleavage-fault intersection lines are parallel to the normals of fault slip-vectors. The angle between a fault plane and the associated cleavage was found to be fairly constant (c. 40") at different scales of observation. Finally, the spacing of the solution cleavage surfaces appeared in general to be regular (with a mean of about 22 mm), although it was found to decrease slightly near a fault plane. These results are intended to provide a basis for predicting the architecture of fault zones in buried carbonate reservoirs using seismic reflection and borehole data. [source]


F. Storti
Recent hydrocarbon discoveries in the Southern Apennines of Italy have focussed attention on the importance of studying fracturing and cataclasis in carbonate rocks because of their fundamental impact on reservoir permeability and connectivity. The Narni Anticline in the central Apennines consists of a stack of easterly-verging carbonate thrust sheets compartmentalized by extensional and strike-slip fault zones. The structure provides afield analogue for studying the evolution of superimposed fold- and fault-related fractures in carbonate reservoir rocks. The fracture pattern at the Narni Anticline developed as a result of three mechanisms: (a) layer-parallel shortening predating folding and faulting; (b) thrust-related folding and further thrust breakthrough; and (c) extensional and strike-slip faulting. Along-strike (longitudinal) fractures developed during progressive rollover fault-propagation folding, and their intensity depends on the precise structural position within the fold: fracture intensity is high in the forelimb and low in the crest. The 3-D architecture of the mechanical anisotropy associated with thrusting, folding, and related fracturing constrained the location and geometry of subsequent extensional and strike-slip faulting. The superimposition in damage zones of a fault-related cleavage on the pre-existing fracture pattern, which is associated with layer-parallel shortening and thrust-related folding, resulted in rock fragmentation and comminution, and the development of cataclastic bands. The evolution of fracturing in the Narni Anticline, its role in constraining thrust breakthrough trajectories and the location of extensional and strike-slip faults, and the final development of low-permeability cataclastic bands, will be relevant to studies of known oilfields in the Southern Apennines, as well as for future exploration. [source]


L. Tortorici
Imbricate units in the western Sicilian fold-and-thrust belt originated on the southern continental margin of Neotethys, and were deformed during the Neogene-Recent in response to convergence between the African and European Plates. Neogene-Pleistocene synorogenic sediments, deposited in flexural foredeeps and satellite piggy-back basins, contain a record of the belt's evolution. Progressive migration of the thrust front southwards into the foreland has been documented, beginning in the Tortonian and continuing to the present-day particularly in western parts of the belt. In the eastern part, activity on Quaternary strike-slip fault zones has produced asymmetric flower structures and other interference structures. In this paper, we present two regional sections across the western Sicilian foreland-thrust belt system. These structural cross-sections extend down as far as the top of the Hercynian basement and integrate our field observations with previously-acquired well log, magnetic and seismic data. We show that complex interactions between the foreland-migrating thrust belt, which developed between the Late Miocene and the Pleistocene, and Pleistocene strike-slip faults led to the development of structural traps which constitute potential targets for hydrocarbon exploration. [source]

Carbonate sedimentation in a starved pull-apart basin, Middle to Late Devonian, southern Guilin, South China

BASIN RESEARCH, Issue 2 2001
D. Chen
ABSTRACT Geological mapping and sedimentological investigations in the Guilin region, South China, have revealed a spindle- to rhomb-shaped basin filled with Devonian shallow- to deep-water carbonates. This Yangshuo Basin is interpreted as a pull-apart basin created through secondary, synthetic strike-slip faulting induced by major NNE,SSW-trending, sinistral strike-slip fault zones. These fault zones were initially reactivated along intracontinental basement faults in the course of northward migration of the South China continent. The nearly N,S-trending margins of the Yangshuo Basin, approximately coinciding with the strike of regional fault zones, were related to the master strike-slip faults; the NW,SE-trending margins were related to parallel, oblique-slip extensional faults. Nine depositional sequences recognized in Givetian through Frasnian strata can be grouped into three sequence sets (Sequences 1,2, 3,5 and 6,9), reflecting three major phases of basin evolution. During basin nucleation, most basin margins were dominated by stromatoporoid biostromes and bioherms, upon a low-gradient shelf. Only at the steep, fault-controlled, eastern margin were thick stromatoporoid reefs developed. The subsequent progressive offset and pull-apart of the master strike-slip faults during the late Givetian intensified the differential subsidence and produced a spindle-shaped basin. The accelerated subsidence of the basin centre led to sediment starvation, reduced current circulation and increased environmental stress, leading to the extensive development of microbial buildups on platform margins and laminites in the basin centre. Stromatoporoid reefs only survived along the windward, eastern margin for a short time. The architectures of the basin margins varied from aggradation (or slightly backstepping) in windward positions (eastern and northern margins) to moderate progradation in leeward positions. A relay ramp was present in the north-west corner between the northern oblique fault zone and the proximal part of the western master fault. In the latest Givetian (corresponding to the top of Sequence 5), a sudden subsidence of the basin induced by further offset of the strike-slip faults was accompanied by the rapid uplift of surrounding carbonate platforms, causing considerable platform-margin collapse, slope erosion, basin deepening and the demise of the microbialites. Afterwards, stromatoporoid reefs were only locally restored on topographic highs along the windward margin. However, a subsequent, more intense basin subsidence in the early Frasnian (top of Sequence 6), which was accompanied by a further sharp uplift of platforms, caused more profound slope erosion and platform backstepping. Poor circulation and oxygen-depleted waters in the now much deeper basin centre led to the deposition of chert, with silica supplied by hydrothermal fluids through deep-seated faults. Two ,subdeeps' were diagonally arranged in the distal parts of the master faults, and the relay ramp was destroyed. At this time, all basin margins except the western one evolved into erosional types with gullies through which granular platform sediments were transported by gravity flows to the basin. This situation persisted into the latest Frasnian. This case history shows that the carbonate platform architecture and evolution in a pull-apart basin were not only strongly controlled by the tectonic activity, but also influenced by the oceanographic setting (i.e. windward vs. leeward) and environmental factors. [source]