Home About us Contact | |||
Striatum
Kinds of Striatum Selected AbstractsDevelopment of Prototype Wireless Transmission Measurement for Glucose in Subcutaneous and Brain StriatumELECTROANALYSIS, Issue 9 2008Farook Ahmad Abstract Monitoring of glucose in subcutaneous and brain striatum have been extensively studied in the past. While biocompatibility was one of the limitations, others included the messy measuring equipments preclude monitoring in a complex environment. This study tried to establish an amperometric measurement of glucose in pre- and post-insulin-administration on diabetic and hyperglycemia rats via wireless. The results have indicated that the wireless sensing kit used was capable of monitoring glucose in both subcutaneous and brain. The physiological data have also shown a new insight on the fabrication of implantable glucose sensors. [source] Regulation of Tyrosine Hydroxylase Activity and Phosphorylation at Ser19 and Ser40 via Activation of Glutamate NMDA Receptors in Rat StriatumJOURNAL OF NEUROCHEMISTRY, Issue 6 2000Niklas Lindgren Abstract: The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser19 -tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser40 and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser40 phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser40 -tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser40 via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis. [source] Ethanol Attenuates the HFS-Induced, ERK-Mediated LTP in a Dose-Dependent Manner in Rat StriatumALCOHOLISM, Issue 1 2009Gui Qin Xie Background:, The striatum has been implicated to play a role in the control of voluntary behavior, and striatal synaptic plasticity is involved in instrumental learning. Ethanol is known to alter synaptic plasticity, in turn altering the behavior of human and animals. However, it remains unclear whether the striatum plays a role in the effects of ethanol on the central nervous system. The objective of this investigation was to study the effects of acute perfusion of ethanol on long-term potentiation (LTP) to elucidate the mechanisms of addictive drugs in the striatum. In addition, we investigated the contribution of intracellular extracellular signal regulated protein kinase (ERK) signaling pathway to corticostriatal LTP induction. Methods:, The stimulation evoked population spikes (PS) were recorded from the dorsomedial striatum (DMS) slices of rat using the extracellular recording technique. The LTP in DMS slices was induced by high-frequency stimulation (HFS). The ERK level of the DMS was assessed with the Western blot technique. Results:, U0126, the inhibitor of ERK, eliminated or significantly attenuated the LTP induced by HFS of the PS in the DMS. MK801 and APV, N -methyl- d -aspartic acid receptor (NMDAR) antagonists, inhibited the induction of striatal LTP, and HFS-induced ERK activation decreased in the slices treated with MK801 in the DMS. Clinically relevant concentrations of ethanol (22 to 88 mM) dose-dependently attenuated the HFS-induced striatal LTP and ERK activation in this brain region. Conclusions:, The LTP of the PS in the DMS is, at least partly, mediated by the ERK pathway coupling to NMDARs. Ethanol attenuated the HFS-induced, ERK-mediated LTP in a dose-dependent manner in this brain region. These results indicate that ethanol may change the synaptic plasticity of corticostriatal circuits underlying the learning of goal-directed instrumental actions, which is mediated by an intracellular ERK signaling pathway associated with NMDARs. [source] Presynaptic parkinsonism in multiple system atrophy mimicking Parkinson's disease: A clinicopathological case studyMOVEMENT DISORDERS, Issue 4 2002José Berciano PhD Abstract We describe the clinicopathological findings in a patient aged 63 years at death who, at age 55 years, developed levodopa-responsive parkinsonism with no atypical features. A diagnosis of idiopathic Parkinson's disease (PD) was made. During the clinical course, fluctuations and dyskinesias appeared. Eight years after onset, he was successfully treated with subthalamic nucleus stimulation but died 3 weeks postoperatively from pulmonary embolus. Brain autopsy showed marked neuronal loss and gliosis in the substantia nigra and locus coeruleus, and, to a much lesser extent, in the basis pontis, inferior olivary nuclei, and cerebellar cortex. Striatum was normal. There were numerous oligodendroglial and neuronal cytoplasmic inclusions and neuropil threads, the highest density being localized in the pons and cerebellar white matter. No Lewy bodies were observed. We conclude that nigral, presynaptic parkinsonism may occur in multiple system atrophy, which even in the long run can be indistinguishable from PD. Putaminal preservation accounts for good response to both levodopa therapy and subthalamic nucleus stimulation. © 2002 Movement Disorder Society [source] Comparison of the Effects of Deramciclane, Ritanserin and Buspirone on Extracellular Dopamine and Its Metabolites in Striatum and Nucleus Accumbens of Freely Moving RatsBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2008Tiina M. Kääriäinen Dual probe in vivo microdialysis in freely moving rats was used to compare the effects of graded doses of deramciclane fumarate (3, 10 and 30 mg/kg), 5-HT2A/C antagonist ritanserin (1 mg/kg) and a partial 5-HT1A agonist buspirone hydrochloride (5 mg/kg) on the extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in nucleus accumbens and striatum assayed by high performance liquid chromatography with electrochemical detection. The indirect dopamine agonist, D-amphetamine sulfate (2 mg/kg), was used as a positive control. Ritanserin, buspirone and deramciclane 3 and 10 mg/kg had no significant effects on the extracellular dopamine levels in either brain area but deramciclane 30 mg/kg significantly increased accumbal dopamine as well as DOPAC and HVA in both brain areas. As expected, the positive control D-amphetamine significantly increased both striatal and accumbal dopamine levels. The effects of buspirone or the highest deramciclane dose and D-amphetamine on DOPAC and HVA levels were opposite; buspirone and deramciclane increased while D-amphetamine decreased the metabolite levels in both brain areas. The results indicate that a single high dose of deramciclane has the neuroleptic- or buspirone-like effect, particularly in mesolimbic regions. There is at least a 5-fold margin between the anxiolytic and neuroleptic doses of deramciclane in the rat. [source] Influence of metyrapone treatment during pregnancy on the development and maturation of brain monoaminergic systems in the ratACTA PHYSIOLOGICA, Issue 4 2009M. L. Leret Abstract Aim:, This study examines the effect of reducing the corticosterone levels of gestating rat dams on the postnatal development and maturation of monoaminergic systems in their offspring's brains. Methods:, Metyrapone, an inhibitor of CORT synthesis, was administered to pregnant rats from E0 to E17 of gestation. Monoamine concentrations were determined in male and female offspring at postnatal days (PN) 23 and 90 in the hippocampus, hypothalamus and striatum. Results:, Reducing maternal corticosterone (mCORT) during gestation led to alterations in dopamine and serotonin levels in all three brain areas studied at PN 23. Alterations persisted until at least PN 90 in the serotonergic systems; the dopamine content of the hippocampus also remained modified. Reduced mCORT during gestation also led to alterations in the development and maturation of the hypothalamic noradrenergic systems. Sexually dimorphic responses were observed in all these monoaminergic systems at different times. Conclusion:, These results suggest that while they are still developing, brain monoaminergic systems are particularly sensitive to epigenetic influences. An adequate foetal level of CORT is required for the normal ontogeny of brain monoaminergic systems. The present data also provide that during the critical period of brain development, maternal CORT plays an important role in the sexual differentiation of monoaminergic systems, with particular influence on brain serotonergic neurones. [source] Dopamine release in ventral striatum of pathological gamblers losing moneyACTA PSYCHIATRICA SCANDINAVICA, Issue 4 2010J. Linnet Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective:, To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue gambling despite losses, known as ,chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method:, We used Positron Emission Tomography (PET) with [11C]raclopride to measure dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results:, PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion:, Our findings suggest a dopaminergic basis of monetary losses in pathological gambling, which might explain loss-chasing behavior. The findings may have implications for the understanding of dopamine dysfunctions and impaired decision-making in pathological gambling and substance-related addictions. [source] Striatal dopamine D2 receptor availability in OCD with and without comorbid social anxiety disorder: preliminary findings,DEPRESSION AND ANXIETY, Issue 1 2008Franklin R. Schneier M.D. Abstract Dopamine D2 receptor availability in the striatum has been reported to be low in generalized social anxiety disorder (GSAD) and obsessive,compulsive disorder (OCD), but it has not been studied in persons with comorbid OCD and GSAD (OCD+GSAD). D2 receptor availability was assessed in 7 subjects with OCD+GSAD, 8 with OCD, and 7 matched healthy comparison (HC) subjects, all unmedicated adults. D2 receptor availability was assessed with single-photon emission computerized tomography (SPECT) to measure binding potential (BP) of the D2 receptor radiotracer [123I] iodobenzamide ([123I]IBZM). Mean striatal [123I]IBZM BP was significantly lower in the OCD+GSAD group (72.58 mL/g, SD=18.17) than in the HC group (118.41 mL/g, SD=45.40; P=.025). Mean BP in the OCD group (93.08 mL/g, SD=36.90) did not differ significantly from the HC group (P=.247). Trait detachment, as measured by the Detachment subscale of the Karolinska Scales of Personality, was negatively correlated with D2 availability across all subjects (rs=,.55, P=.013). Comorbid GSAD and OCD may be associated with decreased availability of D2 receptors in the striatum, consistent with prior findings in GSAD. Prior findings of decreased D2 receptor availability in noncomorbid OCD were not confirmed. Decreased D2 receptor availability was also associated with trait detachment, supporting prior findings in samples of healthy subjects. Depression and Anxiety 0:1,7, 2007. Published 2007 Wiley-Liss, Inc. [source] Regional cerebral brain metabolism correlates of neuroticism and extraversionDEPRESSION AND ANXIETY, Issue 3 2006Thilo Deckersbach Ph.D. Abstract Factor-analytic approaches to human personality have consistently identified several core personality traits, such as Extraversion/Introversion, Neuroticism, Agreeableness, Consciousness, and Openness. There is an increasing recognition that certain personality traits may render individuals vulnerable to psychiatric disorders, including anxiety disorders and depression. Our purpose in this study was to explore correlates between the personality dimensions neuroticism and extraversion as assessed by the NEO Five-Factor Inventory (NEO-FFI) and resting regional cerebral glucose metabolism (rCMRglu) in healthy control subjects. Based on the anxiety and depression literatures, we predicted correlations with a network of brain structures, including ventral and medial prefrontal cortex (encompassing anterior cingulate cortex and orbitofrontal cortex), insular cortex, anterior temporal pole, ventral striatum, and the amygdala. Twenty healthy women completed an 18FFDG (18F-fluorodeoxyglucose) positron emission tomography (PET) scan at rest and the NEO-FFI inventory. We investigated correlations between scores on NEO-FFI Neuroticism and Extraversion and rCMRglu using statistical parametric mapping (SPM99). Within a priori search territories, we found significant negative correlations between Neuroticism and rCMRglu in the insular cortex and positive correlations between Extraversion and rCMRglu in the orbitofrontal cortex. No significant correlations were found involving anterior cingulate, amygdala, or ventral striatum. Neuroticism and Extraversion are associated with activity in insular cortex and orbitofrontal cortex, respectively. Depression and Anxiety 23:133,138, 2006. © 2006 Wiley-Liss, Inc. [source] Differential expression of RAR, isoforms in the mouse striatum during development: A gradient of RAR,2 expression along the rostrocaudal axisDEVELOPMENTAL DYNAMICS, Issue 2 2005Wen-Lin Liao Abstract The retinoic acid receptor RAR, is highly expressed in the striatum of the ventral telencephalon. We studied the expression pattern of different RAR, isoforms in the developing mouse striatum by in situ hybridization. We found a differential ontogeny of RAR,2 and RAR,1/3 in embryonic day (E) 13.5 lateral ganglionic eminence (striatal primordium). RAR,2 mRNA was detected primarily in the rostral and ventromedial domains, whereas RAR,1/3 mRNAs were enriched in the caudal and dorsolateral domains. Notably, by E16.5, a prominent decreasing gradient of RAR,2 mRNA was present in the developing striatum along the rostrocaudal axis, i.e., RAR,2 was expressed at higher levels in the rostral than the caudal striatum. No such gradient was found for RAR,1/3 and RAR,3 mRNAs. The rostrocaudal RAR,2 gradient gradually disappeared postnatally and was absent in the adult striatum. The differential expression pattern of RAR, isoforms in the developing striatum may provide an anatomical basis for differential gene regulation by RAR, signaling. Developmental Dynamics 233:584,594, 2005. © 2005 Wiley-Liss, Inc. [source] Toward a better understanding of the pathophysiology of OCD SSRI responders: QEEG source localizationACTA PSYCHIATRICA SCANDINAVICA, Issue 3 2007T. G. Bolwig Objective:, To demonstrate the utility of three-dimensional source localization of the scalp-recorded electroencephalogram (EEG) for the identification of the most probable underlying brain dysfunction in patients with obsessive,compulsive disorder (OCD). Method:, Eyes-closed resting EEG data was recorded from the scalp locations of the International 10/20 System. Variable resolution electromagnetic tomography (VARETA) was applied to artifact-free EEG data. This mathematical algorithm estimates the source generators of EEG recorded from the scalp. Results:, An excess in the alpha range was found with sources in the corpus striatum, in the orbito-frontal and temporo-frontal regions in untreated OCD patients. This abnormality was seen to decrease following successful treatment with paroxetine. Conclusion:, The VARETA findings of an activation/deactivation pattern in cortical and subcortical structures in paroxetine-responsive patients are in good accordance with data obtained in previously published positron emission tomography studies related to current hypotheses of a thalamo-striatal-frontal feedback loop being relevant for understanding the pathophysiology of OCD. [source] Characterization of the plasticity-related gene, Arc, in the frog brainDEVELOPMENTAL NEUROBIOLOGY, Issue 12 2010Lisa A. Mangiamele Abstract In mammals, expression of the immediate early gene Arc/Arg3.1 in the brain is induced by exposure to novel environments, reception of sensory stimuli, and production of learned behaviors, suggesting a potentially important role in neural and behavioral plasticity. To date, Arc has only been characterized in a few species of mammals and birds, which limits our ability to understand its role in modifying behavior. To begin to address this gap, we identified Arc in two frog species, Xenopus tropicalis and Physalaemus pustulosus, and characterized its expression in the brain of P. pustulosus. We found that the predicted protein for frog Arc shared 60% sequence similarity with Arc in other vertebrates, and we observed high Arc expression in the forebrain, but not the midbrain or hindbrain, of female túngara frogs sacrificed at breeding ponds. We also examined the time-course of Arc induction in the medial pallium, the homologue of the mammalian hippocampus, in response to a recording of a P. pustulosus mating chorus and found that accumulation of Arc mRNA peaked 0.75 h following stimulus onset. We found that the mating chorus also induced Arc expression in the lateral and ventral pallia and the medial septum, but not in the striatum, hypothalamus, or auditory midbrain. Finally, we examined acoustically induced Arc expression in response to different types of mating calls and found that Arc expression levels in the pallium and septum did not vary with the biological relevance or acoustic complexity of the signal. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 813,825, 2010 [source] Conservation and expression of IQ-domain-containing calpacitin gene products (neuromodulin/GAP-43, neurogranin/RC3) in the adult and developing oscine song control systemDEVELOPMENTAL NEUROBIOLOGY, Issue 2-3 2009David F. Clayton Abstract Songbirds are appreciated for the insights they provide into regulated neural plasticity. Here, we describe the comparative analysis and brain expression of two gene sequences encoding probable regulators of synaptic plasticity in songbirds: neuromodulin (GAP-43) and neurogranin (RC3). Both are members of the calpacitin family and share a distinctive conserved core domain that mediates interactions between calcium, calmodulin, and protein kinase C signaling pathways. Comparative sequence analysis is consistent with known phylogenetic relationships, with songbirds most closely related to chicken and progressively more distant from mammals and fish. The C-terminus of neurogranin is different in birds and mammals, and antibodies to the protein reveal high expression in adult zebra finches in cerebellar Purkinje cells, which has not been observed in other species. RNAs for both proteins are generally abundant in the telencephalon yet markedly reduced in certain nuclei of the song control system in adult canaries and zebra finches: neuromodulin RNA is very low in RA and HVC (relative to the surrounding pallial areas), whereas neurogranin RNA is conspicuously low in Area X (relative to surrounding striatum). In both cases, this selective downregulation develops in the zebra finch during the juvenile song learning period, 25,45 days after hatching. These results suggest molecular parallels to the robust stability of the adult avian song control circuit. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Ephrin-A5 regulates the formation of the ascending midbrain dopaminergic pathwaysDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2009Margaret A. Cooper Abstract Dopaminergic neurons from the substantia nigra and the ventral tegmental area of the midbrain project to the caudate/putamen and nucleus accumbens, respectively, establishing the mesostriatal and the mesolimbic pathways. However, the mechanisms underlying the development of these pathways are not well understood. In the current study, the EphA5 receptor and its corresponding ligand, ephrin-A5, were shown to regulate dopaminergic axon outgrowth and influence the formation of the midbrain dopaminergic pathways. Using a strain of mutant mice in which the EphA5 cytoplasmic domain was replaced with ,-galactosidase, EphA5 protein expression was detected in both the ventral tegmental area and the substantia nigra of the midbrain. Ephrin-A5 was found in both the dorsolateral and the ventromedial regions of the striatum, suggesting a role in mediating dopaminergic axon-target interactions. In the presence of ephrin-A5, dopaminergic neurons extended longer neurites in in vitro coculture assays. Furthermore, in mice lacking ephrin-A5, retrograde tracing studies revealed that fewer neurons sent axons to the striatum. These observations indicate that the interactions between ephrin-A ligands and EphA receptors promote growth and targeting of the midbrain dopaminergic axons to the striatum. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Transplanted neurons form both normal and ectopic projections in the adult brainDEVELOPMENTAL NEUROBIOLOGY, Issue 14 2008Sanjay S.P. Magavi Abstract Transplantation of embryonic or stem cell derived neurons has been proposed as a potential therapy for several neurological diseases. Previous studies reported that transplanted embryonic neurons extended long-distance projections through the adult brain exclusively to appropriate targets. We transplanted E14 lateral ganglionic eminence (LGE) and E15 cortical precursors from embryonic mice into the intact adult brain and analyzed the projections formed by transplanted neurons. In contrast to previous studies, we found that transplanted embryonic neurons formed distinct long-distance projections to both appropriate and ectopic targets. LGE neurons transplanted into the adult striatum formed projections not only to the substantia nigra, a normal target, but also to the claustrum and through all layers of fronto-orbital cortex, regions that do not normally receive striatal input. In some cases, inappropriate projections outnumbered appropriate projections. To examine the relationship between the donor cells and host brain in establishing the pattern of projections, we transplanted cortical precursors into the adult striatum. Despite their heterotopic location, cortical precursors not only predominantly formed projections appropriate for cortical neurons, but they also formed projections to inappropriate targets. Transplantation of GFP-expressing cells into ,-galactosidase-expressing mice confirmed that the axonal projections were not created by the fusion of donor and host cells. These results suggest that repairing the brain using transplantation may be more complicated than previously expected, because exuberant ectopic projections could result in brain dysfunction. Understanding the signals regulating axonal extension in the adult brain will be necessary to harness stem cells or embryonic neurons for effective neuronal-replacement therapies. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] Splice-isoform specific immunolocalization of neuronal nitric oxide synthase in mouse and rat brain reveals that the PDZ-complex-building nNOS, ,-finger is largely exposed to antibodiesDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2007Kristina Langnaese Abstract Knock out mice deficient for the splice-isoform ,, of neuronal nitric oxide synthase (nNOS,,) display residual nitric oxide synthase activity and immunosignal. To attribute this signal to the two minor neuronal nitric oxide synthase splice variants, ,, and ,,, we generated isoform-specific anti-peptide antibodies against the nNOS,, specific ,,-finger motif involved in PDZ domain scaffolding and the nNOS,, specific N-terminus. The nNOS,, ,,-finger-specific antibody clearly recognized the 160-kDa band of recombinant nNOS,, on Western blots. Using immunocytochemistry, this antibody displayed, in rats and wild-type mice, a labeling pattern similar to but not identical with that obtained using a commercial pan-nNOS antibody. This similarity indicates that the majority of immunocytochemically detectable nNOS is not likely to be complexed with PDZ-domain proteins via the ,,-finger motif. This conclusion was confirmed by the inhibition of PSD-95/nNOS interaction by the nNOS,, ,,-finger antibody in pull-down assays. By contrast, nNOS,, ,,-finger labeling was clearly reduced in hippocampal and cortical neuropil areas enriched in NMDA receptor complex containing spine synapses. In nNOS,, knock out mice, nNOS,, was not detectable, whereas the pan-nNOS antibody showed a distinct labeling of cell bodies throughout the brain, most likely reflecting ,,/,,-isoforms in these cells. The nNOS,, antibody clearly detected bacterial expressed nNOS,, fusion protein and nNOS,, in overexpressing HEK cells by Western blotting. Immunocytochemically, individual cell bodies in striatum, cerebral cortex, and in some brain stem nuclei were labeled in knock out but not in wild-type mice, indicating an upregulation of nNOS,, in nNOS,, deficient animals. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source] G,, that interacts with adenylyl cyclase in opioid tolerance originates from a Gs proteinDEVELOPMENTAL NEUROBIOLOGY, Issue 12 2006Hoau-Yan Wang Abstract We previously demonstrated that chronic morphine induces a change in G protein coupling by the mu opioid receptor (MOR) from Gi/o to Gs, concurrent with the instatement of an interaction between G,, and adenylyl cyclase types II and IV. These two signaling changes confer excitatory effects on the cell in place of the typical inhibition by opioids and are associated with morphine tolerance and dependence. Both signaling changes and these behavioral manifestations of chronic morphine are attenuated by cotreatment with ultra-low-dose naloxone. In the present work, using striatum from chronic morphine-treated rats, we isotyped the G, within Gs and Go heterotrimers that coupled to MOR and compared these to the G, isotype of the G,, that interacted with adenylyl cyclase II or IV after chronic morphine treatment. Isotyping results show that chronic morphine causes a Gs heterotrimer associated with MOR to release its G,, to interact with adenylyl cyclase. These data suggest that the switch to Gs coupling by MOR in response to chronic morphine, which is attenuated by ultra-low-dose opioid antagonist cotreatment, leads to a two-pronged stimulation of adenylyl cyclase utilizing both G, and G,, subunits of the Gs protein novel to this receptor. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Intrastriatal administration of human immunodeficiency virus-1 glycoprotein 120 reduces glial cell-line derived neurotrophic factor levels and causes apoptosis in the substantia nigraDEVELOPMENTAL NEUROBIOLOGY, Issue 12 2006Rachel L. Nosheny Abstract Uninfected neurons of the substantia nigra (SN) degenerate in human immunodeficiency virus (HIV)-positive patients through an unknown etiology. The HIV envelope glycoprotein 120 (gp120) causes apoptotic neuronal cell death in the rodent striatum, but its primary neurotoxic mechanism is still under investigation. Previous studies have shown that gp120 causes neurotoxicity in the rat striatum by reducing brain-derived neurotrophic factor (BDNF). Because glial cell line-derived neurotrophic factor (GDNF) and BDNF are neurotrophic factors crucial for the survival of dopaminergic neurons of the SN, we investigated whether gp120 reduces GDNF and BDNF levels concomitantly to induce apoptosis. Rats received a microinjection of gp120 or vehicle into the striatum and were sacrificed at various time intervals. GDNF but not BDNF immunoreactivity was decreased in the SN by 4 days in gp120-treated rats. In these animals, a significant increase in the number of caspase-3- positive neurons, both tyrosine hydroxylase (TH)-positive and -negative, was observed. Analysis of TH immunoreactivity revealed fewer TH-positive neurons and fibers in a medial and lateral portion of cell group A9 of the SN, an area that projects to the striatum, suggesting that gp120 induces retrograde degeneration of nigrostriatal neurons. We propose that dysfunction of the nigrostriatal dopaminergic system associated with HIV may be caused by a reduction of neurotrophic factor expression by gp120. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Dopamine transporter binding in Gilles de la Tourette syndrome: a [123I]FP-CIT/SPECT studyACTA PSYCHIATRICA SCANDINAVICA, Issue 2 2004J. Serra-Mestres Objective:, To investigate dopamine transporter binding in Gilles de la Tourette syndrome (GTS) with SPECT and [123I]FP-CIT. Method:, Ten neuroleptic naïve/free patients with GTS, and 10 age- and gender-matched normal volunteers were studied. Subjects were clinically evaluated. GTS severity and affective symptoms were measured and the presence of GTS-related behaviours were recorded. Results:, The GTS group showed significantly higher binding in both caudate and putamen nuclei than the controls. No associations were found between striatal binding ratios and measures of affect or GTS-related behaviours. Conclusion:, Patients with GTS show higher striatal binding of FP-CIT to the striatum in comparison with age- and gender-matched control subjects, indicating that dopamine transporter abnormalities are involved in the pathophysiology of GTS. These abnormalities appear to be distributed across both caudate and putamen. [source] Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatumADDICTION, Issue 10 2010Sabine Vollstädt-Klein ABSTRACT Aims During the development of drug addiction, initial hedonic effects decrease when substance use becomes habitual and ultimately compulsive. Animal research suggests that these changes are represented by a transition from prefrontal cortical control to subcortical striatal control and within the striatum from ventral to dorsal domains of the striatum, but only limited evidence exists in humans. In this study we address this hypothesis in the context of alcohol dependence. Design, setting and participants Non-abstinent heavy social drinkers (n = 21, 5.0 ± 1.5 drinks/day, 13 of them were alcohol-dependent according to DSM-IV) and light social drinkers (n = 10, 0.4 ± 0.4 drinks/day) were examined. Measurements We used a cue-reactivity functional magnetic resonance imaging (fMRI) design during which pictures of alcoholic beverages and neutral control stimuli were presented. Findings In the dorsal striatum heavy drinkers showed significant higher activations compared to light drinkers, whereas light social drinkers showed higher cue-induced fMRI activations in the ventral striatum and in prefrontal areas compared to heavy social drinkers [region of interest analyses, P < 0.05 false discovery rate (FDR)-corrected]. Correspondingly, ventral striatal activation in heavy drinkers correlated negatively with obsessive-compulsive craving, and furthermore we found a positive association between cue-induced activation in the dorsal striatum and obsessive-compulsive craving in all participants. Conclusions In line with our hypothesis we found higher cue-induced activation of the ventral striatum in social compared to heavy drinkers, and higher dorsal striatal activation in heavy drinkers. Increased prefrontal activation may indicate that social drinkers activate cortical control when viewing alcohol cues, which may prevent the development of heavy drinking or alcohol dependence. Our results suggest differentiating treatment research depending on whether alcohol use is hedonic or compulsive. [source] Development of Prototype Wireless Transmission Measurement for Glucose in Subcutaneous and Brain StriatumELECTROANALYSIS, Issue 9 2008Farook Ahmad Abstract Monitoring of glucose in subcutaneous and brain striatum have been extensively studied in the past. While biocompatibility was one of the limitations, others included the messy measuring equipments preclude monitoring in a complex environment. This study tried to establish an amperometric measurement of glucose in pre- and post-insulin-administration on diabetic and hyperglycemia rats via wireless. The results have indicated that the wireless sensing kit used was capable of monitoring glucose in both subcutaneous and brain. The physiological data have also shown a new insight on the fabrication of implantable glucose sensors. [source] Determination of nitrate and nitrite in rat brain perfusates by capillary electrophoresisELECTROPHORESIS, Issue 9 2004Leyi Gao Abstract A fast and simple method for the direct, simultaneous detection of nitrite (NO2,) and nitrate (NO3,) in rat striatum has been developed using a capillary electrophoresis separation of low-flow push-pull perfusion samples. The method was optimized primarily for nitrite because nitrite is more important physiologically and is found at lower levels than nitrate. We obtained a complete separation of NO2, and NO3, in rat striatum within 1.5 min. Optimal CE separations were achieved with 20 mM phosphate, 2 mM cetyltrimethylammonium chloride (CTAC) buffer at pH 3.5. The samples were injected electrokinetically for 2 s into a 40 cm×75 ,m ID fused-silica capillary. The separation voltage was 10 kV (negative polarity), and the injection voltage was 16 kV (negative polarity). UV detection was performed at 214 nm. The limits of detection obtained at a signal-to-noise ratio (S/N) of 3 for nitrite and nitrate were 0.96 and 2.86 ,M. This is one of the fastest separations of nitrite and nitrate of a biological sample ever reported. Interference produced by the high physiological level of chloride is successfully minimized by use of CTAC in the run buffer. [source] No increases in biomarkers of genetic damage or pathological changes in heart and brain tissues in male rats administered methylphenidate hydrochloride (Ritalin) for 28 days,,ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2010Kristine L. Witt Abstract Following a 2005 report of chromosomal damage in children with attention deficit/hyperactivity disorder (ADHD) who were treated with the commonly prescribed medication methylphenidate (MPH), numerous studies have been conducted to clarify the risk for MPH-induced genetic damage. Although most of these studies reported no changes in genetic damage endpoints associated with exposure to MPH, one recent study (Andreazza et al. [2007]: Prog Neuropsychopharmacol Biol Psychiatry 31:1282,1288) reported an increase in DNA damage detected by the Comet assay in blood and brain cells of Wistar rats treated by intraperitoneal injection with 1, 2, or 10 mg/kg MPH; no increases in micronucleated lymphocyte frequencies were observed in these rats. To clarify these findings, we treated adult male Wistar Han rats with 0, 2, 10, or 25 mg/kg MPH by gavage once daily for 28 consecutive days and measured micronucleated reticulocyte (MN-RET) frequencies in blood, and DNA damage in blood, brain, and liver cells 4 hr after final dosing. Flow cytometric evaluation of blood revealed no significant increases in MN-RET. Comet assay evaluations of blood leukocytes and cells of the liver, as well as of the striatum, hippocampus, and frontal cortex of the brain showed no increases in DNA damage in MPH-treated rats in any of the three treatment groups. Thus, the previously reported observations of DNA damage in blood and brain tissue of rats exposed to MPH for 28 days were not confirmed in this study. Additionally, no histopathological changes in brain or heart, or elevated serum biomarkers of cardiac injury were observed in these MPH-exposed rats. Environ. Mol. Mutagen. 2010. Published 2009 Wiley-Liss, Inc. [source] Incentive-elicited striatal activation in adolescent children of alcoholicsADDICTION, Issue 8 2008James M. Bjork ABSTRACT Aims Deficient recruitment of motivational circuitry by non-drug rewards has been postulated as a pre-morbid risk factor for substance dependence (SD). We tested whether parental alcoholism, which confers risk of SD, is correlated with altered recruitment of ventral striatum (VS) by non-drug rewards in adolescence. Design During functional magnetic resonance imaging, adolescent children of alcoholics (COA; age 12,16 years) with no psychiatric disorders (including substance abuse) and similarly aged children with no risk factors responded to targets to win or avoid losing $0, $0.20, $1, $5 or a variable amount (ranging from $0.20 to $5). Results In general, brain activation by either reward anticipation or outcome notification did not differ between COA and age/gender-matched controls. Cue-elicited reward anticipation activated portions of VS in both COA and controls. In nucleus accumbens (NAcc), signal change increased with anticipated reward magnitude (with intermediate recruitment by variable incentives) but not with loss magnitudes. Reward deliveries activated the NAcc and mesofrontal cortex in both COA and controls. Losses activated anterior insula bilaterally in both groups, with more extensive right anterior insula activation by losses in controls. NAcc signal change during anticipation of maximum rewards (relative to non-reward) correlated positively with both Brief Sensation-Seeking Scale scores and with self-reported excitement in response to maximum reward cues (relative to cues for non-reward). Conclusions Among adolescents with no psychiatric disorders, incentive-elicited VS activation may relate more to individual differences in sensation-seeking personality than to presence of parental alcoholism alone. Future research could focus on adolescents with behavior disorders or additional risk factors. [source] Substantial Thalamostriatal Dopaminergic Defect in Unverricht-Lundborg DiseaseEPILEPSIA, Issue 9 2007Miikka Korja Summary:,Purpose: Unverricht-Lundborg disease (ULD) is currently classified as progressive myoclonus epilepsy. Myoclonus, the characteristic symptom in ULD, suggests that dopamine neurotransmission may be involved in the pathophysiology of ULD. Our purpose was to examine brain dopaminergic function in ULD patients. Methods: Four genetically and clinically diagnosed ULD patients and eight healthy controls were scanned with [11C]raclopride-PET. PET images were coregistered to individual 1.5T MR images and region-of-interest analysis was performed for the striatum and thalamus. Standardized uptake values and individual voxel-wise binding potential maps of the patients and controls were also analyzed. Results: ULD patients had markedly higher (31,54%) dopamine D2-like receptor availabilities than healthy controls in both the striatum and the thalamus. The proportionally highest binding potentials were detected in the thalamus. There were no significant differences in the cerebellar uptake of [11C]raclopride in ULD patients versus healthy controls. Voxel-based results were in accordance with the region-of-interest analysis. Conclusions: These results suggest that dopaminergic modulation at the level of the striatum and thalamus could be a crucial factor contributing to the symptoms of ULD. In the light of our data, we propose that ULD with dopamine dysfunction and dyskinetic symptoms shares certain pathophysiological mechanisms with classical movement disorders. Future studies are therefore warranted to study the effect of dopaminergic pharmacotherapy in ULD. [source] PRECLINICAL STUDY: FULL ARTICLE: Ethanol-induced activation of AKT and DARPP-32 in the mouse striatum mediated by opioid receptorsADDICTION BIOLOGY, Issue 3 2010Karl Björk ABSTRACT The reinforcing properties of ethanol are in part attributed to interactions between opioid and dopaminergic signaling pathways, but intracellular mediators of such interactions are poorly understood. Here we report that an acute ethanol challenge induces a robust phosphorylation of two key signal transduction kinases, AKT and DARPP-32, in the striatum of mice. Ethanol-induced AKT phosphorylation was blocked by the opioid receptor antagonist naltrexone but unaffected by blockade of dopamine D2 receptors via sulpiride. In contrast, DARPP-32 phosphorylation was abolished by both antagonists. These data suggest that ethanol acts via two distinct but potentially synergistic striatal signaling cascades. One of these is D2-dependent, while the other is not. These findings illustrate that pharmacology of ethanol reward is likely more complex than that for other addictive drugs. [source] BRIEF REPORT: Varenicline increases striatal dopamine D2/3 receptor binding in ratsADDICTION BIOLOGY, Issue 4 2009Cleo L. Crunelle ABSTRACT Increasing dopamine D2/3 receptor availability is postulated to be a treatment for drug addiction. Varenicline, an ,4,2-nicotinic partial agonist, is effective for nicotine dependence. We hypothesize that varenicline increases dopamine D2/3 receptor availability. Twenty male drug-naïve rats were randomized to varenicline (2 mg/kg) or placebo for 14 days, and then injected with the dopamine D2/3 radiotracer 123I-IBZM. We found significantly higher striatum-to-cerebellum binding ratios in both dorsal and ventral striatum for the varenicline group compared with placebo. Varenicline increases dopamine D2/3 receptor availability in drug-naïve rats. Therefore, varenicline may be an effective treatment for addictions other than smoking. [source] REVIEW: Identifying the neural circuitry of alcohol craving and relapse vulnerabilityADDICTION BIOLOGY, Issue 1 2009Andreas Heinz ABSTRACT With no further intervention, relapse rates in detoxified alcoholics are high and usually exceed 80% of all detoxified patients. It has been suggested that stress and exposure to priming doses of alcohol and to alcohol-associated stimuli (cues) contribute to the relapse risk after detoxification. This article focuses on neuronal correlates of cue responses in detoxified alcoholics. Current brain imaging studies indicate that dysfunction of dopaminergic, glutamatergic and opioidergic neurotransmission in the brain reward system (ventral striatum including the nucleus accumbens) can be associated with alcohol craving and functional brain activation in neuronal systems that process attentional relevant stimuli, reward expectancy and experience. Increased functional brain activation elicited by such alcohol-associated cues predicted an increased relapse risk, whereas high brain activity elicited by affectively positive stimuli may represent a protective factor and was correlated with a decreased prospective relapse risk. These findings are discussed with respect to psychotherapeutic and pharmacological treatment options. [source] PRECLINICAL STUDY: Proteomic analysis of methamphetamine-induced reinforcement processes within the mesolimbic dopamine systemADDICTION BIOLOGY, Issue 3-4 2008Moon Hee Yang ABSTRACT Methamphetamine (MAP) is a commonly used, addictive drug, and a powerful stimulant that dramatically affects the central nervous system. In this study, we used the conditioned place preference (CPP) paradigm in order to study the reinforcing properties of MAP and the herewith associated changes in proteins within the mesolimbic dopamine system. A CPP was induced by MAP after three intermittent intraperitoneal injections (1 mg/kg) in rats and protein profiles in the nucleus accumbens, striatum, prefrontal cortex, cingulate cortex and hippocampus were compared with a saline-treated control group. In addition, a group of animals was run through extinction and protein profiles were compared with a non-extinguished group. Protein screening was conducted using two-dimensional electrophoresis analysis which identified 27 proteins in the group that showed MAP-induced CPP. Some of the proteins were confirmed by Western lot analysis. Identified proteins had functions related to the cytoskeleton, transport/endocytosis or exocytosis (e.g. profilin-2 and syntaxin-binding protein), and signal transduction, among others. [source] PRECLINICAL STUDY: Different effects of chronic phencyclidine on brain-derived neurotrophic factor in neonatal and adult rat brainsADDICTION BIOLOGY, Issue 2 2006Jun'ichi Semba ABSTRACT The N-methyl-D-aspartate (NMDA) receptor and brain-derived neurotrophic factor (BDNF) are both known to play major roles in the normal development of the brain. We have hypothesized that the chronic blockade of NMDA with phencyclidine (PCP) may have a different effect on BDNF synthesis at different stages of development. In an acute experiment, rat pups and adult rats were injected with PCP (2.5, 5 or 10 mg/kg) at postnatal day (PD) 15 or 49, respectively. In a chronic experiment, rat pups were injected daily from PD 5 to PD 14 with PCP (2.5, 5 or 10 mg/kg), while adult rats were injected daily with the same dose from PD 39 to PD 48. BDNF levels in the hippocampus, striatum and frontal cortex were determined by ELISA assay 24 hours after the last injection. Chronic PCP treatment of neonatal rats induced a dose-dependent decrease in BDNF in the hippocampus but not in the frontal cortex and striatum. Single injection of PCP to rat pups showed a slight reduction of BDNF in the hippocampus but only at higher doses. In contrast to neonatal brain, neither acute nor chronic injection of PCP influenced BDNF in adult brain. These findings suggest that chronic blockade of NMDA receptor in the early neonatal period has an inhibitory effect on BDNF synthesis in the hippocampus and may impair normal neurodevelopment in rat pups. [source] |