Stress Regulation (stress + regulation)

Distribution by Scientific Domains


Selected Abstracts


Stress Regulation in Adolescents: Physiological Reactivity During the Adult Attachment Interview and Conflict Interaction

CHILD DEVELOPMENT, Issue 6 2008
Mariëlle D. Beijersbergen
The current study examined whether adolescents' attachment representations were associated with differences in emotion regulation during the Adult Attachment Interview (AAI; C. George, N. Kaplan, & M. Main, 1996) and during a mother,adolescent conflict interaction task (Family Interaction Task [FIT]; J. P. Allen et al., 2003). Participants were one hundred and fifty-six 14-year-old adolescents. Dismissing adolescents showed less interbeat interval (IBI) reactivity (indicating less stress) during the AAI than secure adolescents. However, during the FIT, dismissing adolescents showed more IBI reactivity. No differences in physiological reactivity were found between individuals with resolved or unresolved loss or trauma during the AAI or FIT. The results indicate that dismissing adolescents may effectively use a defensive strategy during the AAI but less so in direct conflict interaction with their attachment figure. [source]


Aberrant protein expression is associated with decreased developmental potential in porcine cumulus,oocyte complexes

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2010
Melissa Paczkowski
Oocyte developmental competence is progressively obtained during pubertal development in females. Poor developmental potential in oocytes derived from prepubertal females suggests that essential processes required for oocyte development have not been fulfilled. The objective of this experiment was to analyze the protein profiles of porcine cumulus,oocyte complexes (COC) derived from cyclic and prepubertal females to identify alterations in protein abundance that correlate with developmental potential. COC complexes, aspirated from prepubertal and cyclic ovaries, were pooled into three replicates of 400 COCs each per treatment in ,100,µl SOF-HEPES medium. Protein samples were extracted and analyzed by two-dimensional differential in gel electrophoresis (2D-DIGE). Over 1,600 proteins were resolved on each of the three replicate gels. Sixteen protein spots were identified by mass spectrometry, representing 14 unique, differentially expressed proteins (volume ratio greater than 1.3). Glutathione- S -transferase and pyruvate kinase 3 were more abundant in COCs derived from cyclic females, whereas soluble epoxide hydrolase and transferrin were more abundant in prepubertal derived COCs. Abundance of several glycolytic enzymes (enolase 1, pyruvate kinase 3, and phosphoglycerate kinase) was increased in COCs derived from cyclic females, suggesting glucose metabolism is decreased in prepubertal derived COCs. We conclude that the abundance of proteins involved in metabolism and oxidative stress regulation is significantly altered in prepubertal derived COCs and may play a role in the mechanisms resulting in developmental competence. Mol. Reprod. Dev. 77: 51,58, 2010. © 2009 Wiley-Liss, Inc. [source]


Organ-specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in Arabidopsis

NEW PHYTOLOGIST, Issue 3 2007
Saiprasad Goud Palusa
Summary ,,Pectate lyases catalyse the eliminative cleavage of de-esterified homogalacturonan in pectin, a major component of the primary cell walls in higher plants. In the completed genome of Arabidopsis, there are 26 genes (AtPLLs) that encode pectate lyase-like proteins. ,,Here, we analysed the expression pattern of all AtPLLs in different organs, at different stages of seedling development and in response to various hormones and stresses. ,,The expression of PLLs varied considerably in different organs, with no expression of some PLLs in vegetative organs. Interestingly, all PLL genes are expressed in flowers. Several PLLs are expressed highly in pollen, suggesting a role for these in pollen development and/or function. Analysis of expression of all PLL genes in seedlings treated with hormones, abiotic stresses and elicitors of defense responses revealed significant changes in the expression of some PLLs without affecting the other PLLs. The stability of transcripts of PLLs varied considerably among different genes. ,,Our results indicate a complex regulation of expression of PLLs and involvement of PLLs in some of the hormonal and stress responses. [source]


Staphylococcus aureus ClpC ATPase is a late growth phase effector of metabolism and persistence

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2009
Indranil Chatterjee Dr.
Abstract Staphylococcus aureus Clp ATPases (molecular chaperones) alter normal physiological functions including an aconitase-mediated effect on post-stationary growth, acetate catabolism, and entry into death phase (Chatterjee et al., J. Bacteriol. 2005, 187, 4488,4496). In the present study, the global function of ClpC in physiology, metabolism, and late-stationary phase survival was examined using DNA microarrays and 2-D PAGE followed by MALDI-TOF MS. The results suggest that ClpC is involved in regulating the expression of genes and/or proteins of gluconeogenesis, the pentose-phosphate pathway, pyruvate metabolism, the electron transport chain, nucleotide metabolism, oxidative stress, metal ion homeostasis, stringent response, and programmed cell death. Thus, one major function of ClpC is balancing late growth phase carbon metabolism. Furthermore, these changes in carbon metabolism result in alterations of the intracellular concentration of free NADH, the amount of cell-associated iron, and fatty acid metabolism. This study provides strong evidence for ClpC as a critical factor in staphylococcal energy metabolism, stress regulation, and late-stationary phase survival; therefore, these data provide important insight into the adaptation of S. aureus toward a persister state in chronic infections. [source]


Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis

THE PLANT JOURNAL, Issue 1 2008
Gyöngyi Székely
Summary ,-1-pyrroline-5-carboxylate synthetase enzymes, which catalyse the rate-limiting step of proline biosynthesis, are encoded by two closely related P5CS genes in Arabidopsis. Transcription of the P5CS genes is differentially regulated by drought, salinity and abscisic acid, suggesting that these genes play specific roles in the control of proline biosynthesis. Here we describe the genetic characterization of p5cs insertion mutants, which indicates that P5CS1 is required for proline accumulation under osmotic stress. Knockout mutations of P5CS1 result in the reduction of stress-induced proline synthesis, hypersensitivity to salt stress, and accumulation of reactive oxygen species. By contrast, p5cs2 mutations cause embryo abortion during late stages of seed development. The desiccation sensitivity of p5cs2 embryos does not reflect differential control of transcription, as both P5CS mRNAs are detectable throughout embryonic development. Cellular localization studies with P5CS,GFP gene fusions indicate that P5CS1 is sequestered into subcellular bodies in embryonic cells, where P5CS2 is dominantly cytoplasmic. Although proline feeding rescues the viability of mutant embryos, p5cs2 seedlings undergo aberrant development and fail to produce fertile plants even when grown on proline. In seedlings, specific expression of P5CS2,GFP is seen in leaf primordia where P5CS1,GFP levels are very low, and P5CS2,GFP also shows a distinct cell-type-specific and subcellular localization pattern compared to P5CS1,GFP in root tips, leaves and flower organs. These data demonstrate that the Arabidopsis P5CS enzymes perform non-redundant functions, and that P5CS1 is insufficient for compensation of developmental defects caused by inactivation of P5CS2. [source]


Assessing oxidative pathway genes as risk factors for bipolar disorder

BIPOLAR DISORDERS, Issue 5 2010
Janice M Fullerton
Fullerton JM, Tiwari Y, Agahi G, Heath A, Berk M, Mitchell PB, Schofield PR. Assessing oxidative pathway genes as risk factors for bipolar disorder. Bipolar Disord 2010: 12: 550,556. © 2010 The Authors. Journal compilation © 2010 John Wiley & Sons A/S. Objectives:, There is a growing body of evidence implicating oxidative stress and the glutathione system in the pathogenesis of major psychiatric illnesses, including schizophrenia and bipolar disorder. Here we investigate whether genes involved in oxidative stress regulation are associated with increased risk for bipolar disorder. Methods:, Four candidate genes were selected a priori from two different steps in the oxidative stress pathway, specifically the synthesis of glutathione [catalytic subunit of glutamate cysteine ligase (GCLC) and regulatory subunit of glutamate cysteine ligase (GCLM)] and the removal of reactive oxygen species [superoxide dismutase 2 (SOD2) and glutathione peroxidase 3 (GPX3)]. Haplotype tagging and functional nucleotide polymorphisms were selected in each gene and tested for association with bipolar disorder under narrow (n = 240) and broad (n = 325) phenotypic models, compared to healthy controls (n = 392, comprising 166 psychiatrically assessed unaffected controls plus 226 healthy individuals). Results:, Single marker association analysis did not reveal significant association with bipolar disorder; however, haplotypes in the SOD2 gene showed nominal association (global ,2 = 8.94, p = 0.03; broad model). Interaction analysis revealed a significant interaction between SOD2 and GPX3 haplotypes, which further increases risk for bipolar disorder (odds ratio = 2.247, ,2 = 9.526, p = 0.002, corrected p = 0.029). Conclusions:, Further characterization of the SOD2 and GPX3 interaction using larger cohorts is required to determine the role of these oxidative pathway genes as risk factors for bipolar disorder. [source]