Stress Protection (stress + protection)

Distribution by Scientific Domains


Selected Abstracts


Maintaining a healthy SPANC balance through regulatory and mutational adaptation

MOLECULAR MICROBIOLOGY, Issue 1 2005
Thomas Ferenci
Summary Stress protection is an important but costly contributor to bacterial survival. Two distinct forms of environmental protection share a common cost and a significant species-wide variability. Porin-mediated outer membrane permeability and the RpoS-controlled general stress response both involve a trade-off between self- preservation and nutritional competence, called the SPANC balance. Interestingly, different Escherichia coli strains exhibit distinct settings of the SPANC balance. It is tilted towards high stress resistance and a restricted diet in some isolates whereas others have broader nutritional capability and better nutrient affinity but lower levels of resistance. Growth- or stress-related selective pressures working in opposite directions (antagonistic pleiotropy) result in polymorphisms affecting porins and RpoS. Consequently, these important cellular components are present at distinct concentrations in different isolates. A generalized hypothesis to explain bacterial adaptation, based on the SPANC investigations, is offered. A holistic approach to bacterial adaptation, involving a gamut of regulation and mutation, is likely to be the norm in broadening the capabilities of a species. Indeed, there is unlikely to be a standard regulatory setting typical for all members of a species. Gene regulation provides a limited fine control for maintaining the right level of adaptation in a particular niche but mutational changes provide the coarse control for adaptation between the species-wide environments of free-living bacteria. [source]


Proteomic analysis of hearts from frataxin knockout mice: Marked rearrangement of energy metabolism, a response to cellular stress and altered expression of proteins involved in cell structure, motility and metabolism

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 8 2008
Robert Sutak
Abstract A frequent cause of death in Friedreich's ataxia patients is cardiomyopathy, but the molecular alterations underlying this condition are unknown. We performed 2-DE to characterize the changes in protein expression of hearts using the muscle creatine kinase frataxin conditional knockout (KO) mouse. Pronounced changes in protein expression profile were observed in 9,week-old KO mice with severe cardiomyopathy. In contrast, only several proteins showed altered expression in asymptomatic 4,week-old KO mice. In hearts from frataxin KO mice, components of the iron-dependent complex-I and -II of the mitochondrial electron transport chain and enzymes involved in ATP homeostasis (creatine kinase, adenylate kinase) displayed decreased expression. Interestingly, the KO hearts exhibited increased expression of enzymes involved in the citric acid cycle, catabolism of branched-chain amino acids, ketone body utilization and pyruvate decarboxylation. This constitutes evidence of metabolic compensation due to decreased expression of electron transport proteins. There was also pronounced up-regulation of proteins involved in stress protection, such as a variety of chaperones, as well as altered expression of proteins involved in cellular structure, motility and general metabolism. This is the first report of the molecular changes at the protein level which could be involved in the cardiomyopathy of the frataxin KO mouse. [source]


14.6 mT ELF magnetic field exposure yields no DNA breaks in model system Salmonella, but provides evidence of heat stress protection

BIOELECTROMAGNETICS, Issue 6 2006
Parley A. Williams
Abstract In this study, we demonstrate that common extremely low frequency magnetic field (MF) exposure does not cause DNA breaks in this Salmonella test system. The data does, however, provide evidence that MF exposure induces protection from heat stress. Bacterial cultures were exposed to MF (14.6 mT 60 Hz field, cycled 5 min on, 10 min off for 4 h) and a temperature-matched control. Double- and single-stranded DNA breaks were assayed using a recombination event counter. After MF or control exposure they were grown on indicator plates from which recombination events can be quantified and the frequency of DNA strand breaks deduced. The effect of MF was also monitored using a recombination-deficient mutant (recA). The results showed no significant increase in recombination events and strand breaks due to MF. Evidence of heat stress protection was determined using a cell viability assay that compared the survival rates of MF exposed and control cells after the administration of a 10 min 53 °C heat stress. The control cells exhibited nine times more cell mortality than the MF exposed cells. This Salmonella system provides many mutants and genetic tools for further investigation of this phenomenon. Bioelectromagnetics 27:445,450, 2006.© 2006 Wiley-Liss, Inc. [source]