Stress Fibers (stress + fiber)

Distribution by Scientific Domains

Kinds of Stress Fibers

  • actin stress fiber

  • Terms modified by Stress Fibers

  • stress fiber formation

  • Selected Abstracts


    Plectin deposition at podosome rings requires myosin contractility

    CYTOSKELETON, Issue 8 2008
    Annica Gad
    Abstract Metalloproteinase-dependent tissue invasion requires the formation of podosomes and invadopodia for localized matrix degradation. Actin cytoskeleton remodeling via Arp2/3-mediated actin polymerization is essential for podosome formation, and dynamic microtubules have an important role in maintaining podosome turnover in macrophages and osteoclasts. Little is known, however, about the involvement of the intermediate filament cytoskeleton in formation, stabilization, and turnover of podosomes. Here we show that vimentin intermediate filaments colocalize with the early sites of podosome formation at the stress fiber - focal adhesion interface in cultured vascular smooth muscle cells, but do not directly contribute to podosome formation, or stabilization. In unstimulated A7r5 cells the cytolinker protein plectin poorly colocalized with vimentin and the microdomains, but following induction by phorbol ester accumulated in the rings that surround the podosomes. In plectin-deficient A7r5 cells actin stress fiber remodelling is reduced in response to PDBu, and small podosomes remain localized at stable actin stress fibres. Pharmacological inhibition of actomyosin contractility by blebbistatin leads to an aberrant localization of podosomes away from the cell periphery and induces failure of plectin to surround the outer perimeter of these invasive adhesions. Taken together, we conclude that plectin is involved in growth and maturation of podosomes by reducing focal adhesion and stress fiber turnover, and that actomyosin-dependent contractility is required for the peripheral localization and specific deposition of plectin at the podosome rings. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source]


    Molecular identification and localization of cellular titin, a novel titin isoform in the fibroblast stress fiber

    CYTOSKELETON, Issue 6 2007
    Peter J. Cavnar
    Abstract We previously discovered a large titin-like protein,c-titin,in chicken epithelial brush border and human blood platelet extracts that binds ,-actinin and organizes arrays of myosin II bipolar filaments in vitro. RT-PCR analysis of total RNA from human megakaryoblastic (CHRF-288-11) and mouse fibroblast (3T3) nonmuscle cells reveal sequences identical to known titin gene exon sequences that encode parts of the Z-line, I-band, PEVK domain, A-band, and M-line regions of striated muscle titins. In the nonmuscle cells, these sequences are differentially spliced in patterns not reported for any striated muscle titin isoform. Rabbit polyclonal antibodies raised against expressed protein fragments encoded by the Z-repeat and kinase domain regions react with the c-titin band in Western blot analysis of platelet extracts and immunoprecipitate c-titin in whole platelet extracts. Immunofluorescent localization demonstrates that the majority of the c-titin colocalizes with ,-actinin and actin in 3T3 and Indian Muntjac deer skin fibroblast stress fibers. Our results suggest that differential expression of titin gene exons in nonmuscle cells yields multiple novel isoforms of the protein c-titin that are associated with the actin stress fiber structures. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]


    Melatonin increases stress fibers and focal adhesions in MDCK cells: participation of Rho-associated kinase and protein kinase C

    JOURNAL OF PINEAL RESEARCH, Issue 2 2007
    Gerardo Ramírez-Rodríguez
    Abstract:, Melatonin cyclically modifies water transport measured as dome formation in MDCK cells. An optimal increase in water transport, concomitant with elevated stress fiber (SF) formation, occurs at nocturnal plasma melatonin concentrations (1 nm) after 6 hr of incubation. Blockage in melatonin-elicited dome formation was observed with protein kinase C (PKC) inhibitors. Despite, this information on the precise mechanism by which melatonin increases SF formation involved in water transport is not known. Focal adhesion contacts (FAC) are cytoskeletal structures, which participate in MDCK membrane polarization. SF organization and vinculin phosphorylation are involved in FAC assembly and both processes are mediated by PKC, an enzyme stimulated by melatonin; in these processes also involved is Rho-associated kinase (ROCK). Thus, we studied FAC formation and the ROCK/PKC pathway as the mechanism by which melatonin increases SF formation and water transport. The results showed that 1 nM melatonin and the PKC agonist phorbol-12-miristate-13-acetate increased FAC. The PKC inhibitor GF109203x, and the ROCK inhibitor Y27632, blocked increased FAC caused by melatonin. ROCK and PKC activities, vinculin phosphorylation and FAC formation were increased with melatonin. The PKC inhibitor, GF109203x, abolished both melatonin stimulated FAC in whole cells and ROCK activity, indicating that ROCK is a downstream kinase in the melatonin-stimulated PKC pathway in MDCK cultured cells that causes an increase in SF and FAC formation. Data also document that melatonin modulates water transport through modifications of the cytoskeletal structure. [source]


    The heel and toe of the cell's foot: A multifaceted approach for understanding the structure and dynamics of focal adhesions

    CYTOSKELETON, Issue 11 2009
    Haguy Wolfenson
    Abstract Focal adhesions (FAs) are large clusters of transmembrane receptors of the integrin family and a multitude of associated cytoplasmic "plaque" proteins, which connect the extracellular matrix-bound receptors with the actin cytoskeleton. The formation of nearly stationary FAs defines a boundary between the dense and highly dynamic actin network in lamellipodium and the sparser and more diverse cytoskeletal organization in the lamella proper, creating a template for the organization of the entire actin network. The major "mechanical" and "sensory" functions of FAs; namely, the nucleation and regulation of the contractile, myosin-II-containing stress fibers and the mechanosensing of external surfaces depend, to a major extent, on the dynamics of molecular components within FAs. A central element in FA regulation concerns the positive feedback loop, based on the most intriguing feature of FAs; that is, their dependence on mechanical tension developing by the growing stress fibers. FAs grow in response to such tension, and rapidly disassemble upon its relaxation. In this article, we address the mechanistic relationships between the process of FA development, maturation and dissociation and the dynamic molecular events, which take place in different regions of the FA, primarily in the distal end of this structure (the "toe") and the proximal "heel," and discuss the central role of local mechanical forces in orchestrating the complex interplay between FAs and the actin system. Cell Motil. Cytoskeleton 66: 1017,1029, 2009. © 2009 Wiley-Liss, Inc. [source]


    Actin stress fiber pre-extension in human aortic endothelial cells

    CYTOSKELETON, Issue 4 2008
    Lan Lu
    Abstract Actin stress fibers (SFs) enable cells to sense and respond to mechanical stimuli and affect adhesion, motility and apoptosis. We and others have demonstrated that cultured human aortic endothelial cells (HAECs) are internally stressed so that SFs are pre-extended beyond their unloaded lengths. The present study explores factors affecting SF pre-extension. In HAECs cultured overnight the baseline pre-extension was 1.10 and independent of the amount of cell shortening. Decreasing contractility with 30 mM BDM or 10 ,M blebbistatin decreased pre-extension to 1.05 whereas increasing contractility with 2 nM calyculin A increased pre-extension to 1.26. Knockdown of ,-actinin-1 with an interfering RNA increased pre-extension to 1.28. None of these affected the wavelength of the buckled SFs. Pre-extension was the same in unperturbed cells as in those in which the actin cytoskeleton was disrupted by both chemical and mechanical means and then allowed to reassemble. Finally, disrupting MTs or IFs did not affect pre-extension but increased the wavelength. Taken together, these results suggest that pre-extension of SFs is determined primarily by intrinsic factors, i.e. the level of actin-myosin interaction. This intrinsic control of pre-extension is sufficiently robust that pre-extension is the same even after the actin cytoskeleton has been disrupted and reorganized. Unlike pre-extension, the morphology of the compressed SFs is partially determined by MTs and IFs which appear to support the SFs along their lengths. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source]


    Opposite effects of overexpressed myosin Va or heavy meromyosin Va on vesicle distribution, cytoskeleton organization, and cell motility in nonmuscle cells

    CYTOSKELETON, Issue 3 2008
    Robbin D. Eppinga
    Abstract Myosin Va, an actin-based motor protein that transports intracellular cargos, can bundle actin in vitro. Whether myosin Va regulates cellular actin dynamics or cell migration remains unclear. To address this, we compared Chinese Hamster Ovary (CHO) cells that stably express GFP fused to either full length mouse myosin Va (GFP-M5) or heavy meromyosin Va (GFP-M5,). GFP-M5 and GFP-M5, co-immunoprecipitate with CHO myosin Va and serve as overexpression of wild-type and dominant negative mutants of myosin Va. Compared to non-expressing control cells, GFP-M5-overexpressing cells have peripheral endocytic vesicles, spread slowly after plating, as well as produce robust interior actin stress fibers, myosin II bundles, and focal adhesions. However, these cells display normal cell migration and lamellipodial dynamics. In contrast, GFP-M5,-expressing cells have perinuclear endocytic vesicles, produce thin interior actin and myosin bundles and contain no interior focal adhesions. In addition, these cells spread rapidly, migrate slowly and display reduced lamellipodial dynamics. Similarly, neurite outgrowth is compromised in neurons cultured from transgenic Drosophila that express M5,-dsRed and in neurons cultured from Drosophila that produce a tailless version of endogenous myosin V. Together, these data suggest that myosin Va overexpression induces actin bundles in vivo whereas the tailless version fails to bundle actin and disrupts cell motility. Cell Motil. Cytoskeleton 2008. © 2007 Wiley-Liss, Inc. [source]


    Molecular identification and localization of cellular titin, a novel titin isoform in the fibroblast stress fiber

    CYTOSKELETON, Issue 6 2007
    Peter J. Cavnar
    Abstract We previously discovered a large titin-like protein,c-titin,in chicken epithelial brush border and human blood platelet extracts that binds ,-actinin and organizes arrays of myosin II bipolar filaments in vitro. RT-PCR analysis of total RNA from human megakaryoblastic (CHRF-288-11) and mouse fibroblast (3T3) nonmuscle cells reveal sequences identical to known titin gene exon sequences that encode parts of the Z-line, I-band, PEVK domain, A-band, and M-line regions of striated muscle titins. In the nonmuscle cells, these sequences are differentially spliced in patterns not reported for any striated muscle titin isoform. Rabbit polyclonal antibodies raised against expressed protein fragments encoded by the Z-repeat and kinase domain regions react with the c-titin band in Western blot analysis of platelet extracts and immunoprecipitate c-titin in whole platelet extracts. Immunofluorescent localization demonstrates that the majority of the c-titin colocalizes with ,-actinin and actin in 3T3 and Indian Muntjac deer skin fibroblast stress fibers. Our results suggest that differential expression of titin gene exons in nonmuscle cells yields multiple novel isoforms of the protein c-titin that are associated with the actin stress fiber structures. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]


    Rho plays a central role in regulating local cell-matrix mechanical interactions in 3D culture

    CYTOSKELETON, Issue 6 2007
    N. Lakshman
    Abstract The purpose of this study was to assess quantitatively the role of the small GTPase Rho on cell morphology, f-actin organization, and cell-induced matrix remodeling in 3D culture. Human corneal fibroblasts (HTK) were infected with adenoviruses that express green fluorescent protein (GFP) or GFP-N19Rho (dominant negative Rho). One day later cells were plated inside collagen matrices and allowed to spread for 24 h. Cells were fixed and stained for f-actin. Fluorescent (for f-actin) and reflected light (for collagen fibrils) images were acquired using confocal microscopy. Fourier transform analysis was used to assess local collagen fibril alignment, and changes in cell morphology and collagen density were measured using MetaMorph. The decrease in matrix height was used as an indicator of global matrix contraction. HTK and HTK-GFP cells induced significant global matrix contraction; this was inhibited by N19Rho. HTK and HTK-GFP fibroblasts generally had a bipolar morphology and occasional intracellular stress fibers. Collagen fibrils were compacted and aligned parallel to stress fibers and pseudopodia. In contrast, HTK-GFPN19 cells were elongated, and had a more cortical f-actin distribution. Numerous small extensions were also observed along the cell body. In addition, both local collagen fibril density and alignment were significantly reduced. Rho plays a key role in regulating both the morphology and mechanical behavior of corneal fibroblasts in 3D culture. Overall, the data suggest that Rho-kinase dependent cell contractility contributes to global and local matrix remodeling, whereas Rho dependent activation of mDia and/or other downstream effectors regulates the structure and number of cell processes. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]


    Alpha-smooth muscle actin expression enhances cell traction force

    CYTOSKELETON, Issue 4 2007
    Jianxin Chen
    Abstract Using an established corneal stromal cell differentiation model, we manipulated ,-smooth muscle actin (,-SMA) protein expression levels in fibroblasts by treating them with TGF-,1, bFGF, TGF-, type I receptor inhibitor (SB-431542), and siRNA against ,-SMA. The corresponding cell traction forces (CTFs) were determined by cell traction force microscopy. With all these treatments, we found that ,-SMA is not required for CTF induction, but its expression upregulates CTF. This upregulation involves the modification of stress fibers but does not appear to relate to non-muscle myosin II expression or ,-actin expression. Moreover, there exists a linear relationship between ,-SMA protein expression level and CTF magnitude. Finally, CTFs were found to vary among a population of myofibroblasts, suggesting that ,-SMA protein expression levels of individual cells also vary. Cell Motil. Cytoskeleton 2007. © 2006 Wiley-Liss, Inc. [source]


    Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties

    CYTOSKELETON, Issue 6 2006
    Sophie Féréol
    Abstract In order to understand the sensitivity of alveolar macrophages (AMs) to substrate properties, we have developed a new model of macrophages cultured on substrates of increasing Young's modulus: (i) a monolayer of alveolar epithelial cells representing the supple (,0.1 kPa) physiological substrate, (ii) polyacrylamide gels with two concentrations of bis-acrylamide representing low and high intermediate stiffness (respectively 40 kPa and 160 kPa) and, (iii) a highly rigid surface of plastic or glass (respectively 3 MPa and 70 MPa), the two latter being or not functionalized with type I-collagen. The macrophage response was studied through their shape (characterized by 3D-reconstructions of F-actin structure) and their cytoskeletal stiffness (estimated by transient twisting of magnetic RGD-coated beads and corrected for actual bead immersion). Macrophage shape dramatically changed from rounded to flattened as substrate stiffness increased from soft ((i) and (ii)) to rigid (iii) substrates, indicating a net sensitivity of alveolar macrophages to substrate stiffness but without generating F-actin stress fibers. Macrophage stiffness was also increased by large substrate stiffness increase but this increase was not due to an increase in internal tension assessed by the negligible effect of a F-actin depolymerizing drug (cytochalasine D) on bead twisting. The mechanical sensitivity of AMs could be partly explained by an idealized numerical model describing how low cell height enhances the substrate-stiffness-dependence of the apparent (measured) AM stiffness. Altogether, these results suggest that macrophages are able to probe their physical environment but the mechanosensitive mechanism behind appears quite different from tissue cells, since it occurs at no significant cell-scale prestress, shape changes through minimal actin remodeling and finally an AMs stiffness not affected by the loss in F-actin integrity. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source]


    Myoblast attachment and spreading are regulated by different patterns by ubiquitous calpains

    CYTOSKELETON, Issue 4 2006
    Germain Mazères
    Abstract The calcium-dependent proteolytic system is a large family of well-conserved ubiquitous and tissue-specific proteases, known as calpains, and an endogenous inhibitor, calpastatin. Ubiquitous calpains are involved in many physiological phenomena, such as the cell cycle, muscle cell differentiation, and cell migration. This study investigates the regulation of crucial steps of cell motility, myoblast adhesion and spreading, by calpains. Inhibition of each ubiquitous calpain isoform by antisense strategy pinpointed the involvement of each of these proteases in myoblast adhesion and spreading. Moreover, the actin cytoskeleton and microtubules were observed in transfected cells, demonstrating that each ubiquitous calpain could be involved in the actin fiber organization. C2C12 cells with reduced ,- or m-calpain levels have a rounded morphology and disorganized stress fibers, but no modification in the microtubule cytoskeleton. Antisense strategy directed against MARCKS, a calpain substrate during C2C12 migration, showed that this protein could play a role in stress fiber polymerization. A complementary proteomic analysis using C2C12 cells over-expressing calpastatin indicated that two proteins were under-expressed, while six, which are involved in the studied phenomena, were overexpressed after calpain inhibition. The possible role of these proteins in adhesion, spreading, and migration was discussed. Cell Motil. Cytoskeleton 63: 2006. © 2006 Wiley-Liss, Inc. [source]


    Dexamethasone alters F-actin architecture and promotes cross-linked actin network formation in human trabecular meshwork tissue

    CYTOSKELETON, Issue 2 2005
    Abbot F. Clark
    Abstract Elevated intraocular pressure is an important risk factor for the development of glaucoma, a leading cause of irreversible blindness. This ocular hypertension is due to increased hydrodynamic resistance to the drainage of aqueous humor through specialized outflow tissues, including the trabecular meshwork (TM) and the endothelial lining of Schlemm's canal. We know that glucocorticoid therapy can cause increased outflow resistance and glaucoma in susceptible individuals, that the cytoskeleton helps regulate aqueous outflow resistance, and that glucocorticoid treatment alters the actin cytoskeleton of cultured TM cells. Our purpose was to characterize the actin cytoskeleton of cells in outflow pathway tissues in situ, to characterize changes in the cytoskeleton due to dexamethasone treatment in situ, and to compare these with changes observed in cell culture. Human ocular anterior segments were perfused with or without 10,7 M dexamethasone, and F-actin architecture was investigated by confocal laser scanning microscopy. We found that outflow pathway cells contained stress fibers, peripheral actin staining, and occasional actin "tangles." Dexamethasone treatment caused elevated IOP in several eyes and increased overall actin staining, with more actin tangles and the formation of cross-linked actin networks (CLANs). The actin architecture in TM tissues was remarkably similar to that seen in cultured TM cells. Although CLANs have been reported previously in cultured cells, this is the first report of CLANs in tissue. These cytoskeletal changes may be associated with increased aqueous humor outflow resistance after ocular glucocorticoid treatment. Cell Motil. Cytoskeleton 60:83,95, 2005. © 2004 Wiley-Liss, Inc. [source]


    Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion

    CYTOSKELETON, Issue 1 2005
    Tony Yeung
    Abstract The morphology and cytoskeletal structure of fibroblasts, endothelial cells, and neutrophils are documented for cells cultured on surfaces with stiffness ranging from 2 to 55,000 Pa that have been laminated with fibronectin or collagen as adhesive ligand. When grown in sparse culture with no cell-cell contacts, fibroblasts and endothelial cells show an abrupt change in spread area that occurs at a stiffness range around 3,000 Pa. No actin stress fibers are seen in fibroblasts on soft surfaces, and the appearance of stress fibers is abrupt and complete at a stiffness range coincident with that at which they spread. Upregulation of ,5 integrin also occurs in the same stiffness range, but exogenous expression of ,5 integrin is not sufficient to cause cell spreading on soft surfaces. Neutrophils, in contrast, show no dependence of either resting shape or ability to spread after activation when cultured on surfaces as soft as 2 Pa compared to glass. The shape and cytoskeletal differences evident in single cells on soft compared to hard substrates are eliminated when fibroblasts or endothelial cells make cell-cell contact. These results support the hypothesis that mechanical factors impact different cell types in fundamentally different ways, and can trigger specific changes similar to those stimulated by soluble ligands. Cell Motil. Cytoskeleton 60:24,34, 2005. © 2004 Wiley-Liss, Inc. [source]


    Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading

    CYTOSKELETON, Issue 3 2004
    Baruch Zimerman
    Cell adhesion to the extracellular matrix triggers the formation of integrin-mediated contact and reorganization of the actin cytoskeleton. Examination of nascent adhesions, formed during early stages of fibroblast spreading, reveals a variety of forms of actin-associated matrix adhesions. These include: (1) small (,1 ,m), dot-like, integrin-, vinculin-, paxillin-, and phosphotyrosine-rich structures, with an F-actin core, broadly distributed over the ventral surfaces of the cells; (2) integrin-, vinculin-, and paxillin-containing "doublets" interconnected by short actin bundles; (3) arrays of actin-vinculin complexes. Such structures were formed by freshly plated cells, as well as by cells recovering from latrunculin treatment. Time-lapse video microscopy of such cells, expressing GFP-actin, indicated that long actin cables are formed by an end-to-end lining-up and apparent fusion of short actin bundles. All these structures were prominent during cell spreading, and persisted for up to 30,60 min after plating. Upon longer incubation, they were gradually replaced by stress fibers, associated with focal adhesions at the cell periphery. Direct examination of paxillin and actin reorganization in live cells revealed alignment of paxillin doublets, forming long and highly dynamic actin bundles, undergoing translocation, shortening, splitting, and convergence. The mechanisms underlying the assembly and reorganization of actin-associated focal adhesions and the involvement of mechanical forces in regulating their dynamic properties are discussed. Cell Motil. Cytoskeleton 58:143,159, 2004. © 2004 Wiley-Liss, Inc. [source]


    Palladin is a novel binding partner for Ena/VASP family members

    CYTOSKELETON, Issue 1 2004
    Malika Boukhelifa
    Abstract Palladin is an actin-associated protein that contains proline-rich motifs within its amino-terminal sequence that are similar to motifs found in zyxin, vinculin, and the Listeria protein ActA. These motifs are known to be potential binding sites for the Vasodilator-Stimulated Phosphoprotein (VASP). Here, we demonstrate that palladin is an additional direct binding partner for VASP, by using co-immunoprecipitation and blot overlay techniques with both endogenous palladin and recombinant myc-tagged palladin. These results show that VASP binds to full-length palladin and also to the amino-terminal half of palladin, where the polyproline motifs are located. Using a synthetic peptide array, two discrete binding sites for VASP were identified within palladin's proline-rich amino-terminal domain. Using double-label immunofluorescence staining of fully-spread and actively-spreading fibroblasts, the extent of co-localization of palladin and VASP was explored. These proteins were found to strongly co-localize along stress fibers, and partially co-localize in focal adhesions, lamellipodia, and focal complexes. These results suggest that the recently described actin-associated protein palladin may play an important role in recruiting VASP to sites of actin filament growth, anchorage, and crosslinking. Cell Motil. Cytoskeleton 58:17,29, 2004. © 2004 Wiley-Liss, Inc. [source]


    Dominant-negative Rac increases both inherent and ionizing radiation-induced cell migration in C6 rat glioma cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 8 2006
    So-Young Hwang
    Abstract Rho-like GTPases, including Cdc42, Rac1 and RhoA, regulate distinct actin cytoskeleton changes required for cell adhesion, migration and invasion. In the present study, we examined the role of Rac signaling in inherent migration, as well as radiation-induced migration, of rat glioma cells. Stable overexpression of dominant-negative Rac1N17 in a C6 rat glioma cell line (C6-RacN17) promoted cell migration, and ionizing radiation further increased this migration. Migration was accompanied by decreased expression of the focal adhesion molecules FAK and paxillin. Focal contacts and actin stress fibers were also reduced in C6-RacN17 cells. Downstream effectors of Rac include JNK and p38 MAP kinases. Irradiation transiently activated p38, JNK and ERK1/2 MAP kinases in C6-RacN17 cells, while p38 and JNK were constitutively activated in C6 control cells. Blocking JNK activity with JNK inhibitor SP600125 inhibited migration, suggesting that the JNK pathway may regulate radiation-induced, as well as inherent, migration of C6-RacN17 cells. Additionally, the radiation-induced migration increase was also inhibited by SB203580, a specific inhibitor of p38 MAP kinase. However, PD98059, a MEK kinase 1 inhibitor, failed to influence migration. This is the first evidence that suppression of Rac signaling may be involved in invasion or metastasis of glioma cells before and/or after radiotherapy. These data further suggest that radiotherapy for malignant glioma needs to be used with caution because of the potential for therapy-induced cell migration or invasion and that pharmacological inhibition of cell migration and invasion through targeting the Rac signaling pathway may represent a new approach for improving the therapeutic efficacy of radiotherapy for malignant glioma. © 2005 Wiley-Liss, Inc. [source]


    Alterations in tropomyosin isoform expression in human transitional cell carcinoma of the urinary bladder

    INTERNATIONAL JOURNAL OF CANCER, Issue 3 2004
    Geraldine Pawlak
    Abstract Previous studies of transformed rodent fibroblasts have suggested that specific isoforms of the actin-binding protein tropomyosin (TM) could function as suppressors of transformation, but an analysis of TM expression in patient tumor tissue is limited. The purpose of our study was to characterize expression of the different TM isoforms in human transitional cell carcinoma of the urinary bladder by immunohistochemistry and Western blot analysis. We found that TM1 and TM2 protein levels were markedly reduced and showed >60% reduction in 61% and 55% of tumor samples, respectively. TM5, which was expressed at very low levels in normal bladder mucosa, exhibited aberrant expression in 91% of tumor specimens. The Western blot findings were confirmed by immunohistochemical analysis in a number of tumors. We then investigated the mechanism underlying TM expression deregulation, in the T24 human bladder cancer cell line. We showed that levels of TM1, TM2 and TM3 are reduced in T24 cells, but significantly upregulated by inhibition of the mitogen-activated protein kinase-signaling pathway. In addition, inhibition of this pathway was accompanied by restoration of stress fibers. Overall, changes in TM expression levels seem to be an early event during bladder carcinogenesis. We conclude that alterations in TM isoform expression may provide further insight into malignant transformation in transitional cell carcinomas of the bladder and may be a useful target for early detection strategies. © 2004 Wiley-Liss, Inc. [source]


    Diphosphorylation of the myosin regulatory light chain enhances the tension acting on stress fibers in fibroblasts

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2006
    Takeomi Mizutani
    Regulation of the contractile force is crucial for cell migration, cell proliferation, and maintenance of cell morphology. Phosphorylation of the myosin II regulatory light chain (MRLC) is involved in these processes. To show whether the diphosphorylation of MRLC increases the tension acting on stress fibers, changes in the stiffness of fibroblasts expressing wild-type MRLC and a mutant type, which cannot be diphosphorylated, on treatment with lysophosphatidic acid (LPA) were examined by a mechanical-scanning probe microscope (M-SPM). The LPA treatment increased cellular stiffness in the wild-type MRLC expressing cells, while it had no effect on the mutated cells. Immunostaining showed that LPA stimulation induced the diphosphorylation of MRLC. These results suggest that the diphosphorylation of MRLC enhances the tension acting on stress fibers. J. Cell. Physiol. 209: 726,731, 2006. © 2006 Wiley-Liss, Inc. [source]


    Vinculin, VASP, and profilin are coordinately regulated during actin remodeling in epithelial cells, which requires de novo protein synthesis and protein kinase signal transduction pathways

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2004
    Margaret P. Quinlan
    Transformation progression of epithelial cells involves alterations in their morphology, polarity, and adhesive characteristics, all of which are associated with the loss and/or reorganization of actin structures. To identify the underlying mechanism of formation of the adhesion-dependent, circumferential actin network, the expression and localization of the actin binding and regulating proteins (ABPs), vinculin, VASP, and profilin were evaluated. Experimental depolarization of epithelial cells results in the loss of normal F-actin structures and the transient upregulation of vinculin, VASP, and profilin. This response is due to the loss of cell,cell, and not cell,substrate interactions, since cells that no longer express focal adhesions or stress fibers are still sensitive to changes in adhesion and manifest this in the altered profile of expression of these ABPs. Transient upregulation is dependent upon de novo protein synthesis, and protein kinase-, but not phosphatase-sensitive signal transduction pathway(s). Inhibition of the synthesis of these proteins is accompanied by dephosphorylation of the ribosomal S6 protein, but does not involve inhibition of the PI3-kinase-Akt-mTOR pathway. Constitutive expression of VASP results in altered cell morphology and adhesion and F-actin and vinculin structures. V12rac1 expressing epithelial cells are constitutively nonadhesive, malignantly transformed, and constitutively express high levels of these ABPs, with altered subcellular localizations. Transformation suppression is accompanied by the restoration of normal levels of the three ABPs, actin structures, adhesion, and epithelial morphology. Thus, vinculin, VASP, and profilin are coordinately regulated by signal transduction pathways that effect a translational response. Additionally, their expression profile maybe indicative of the adhesion and transformation status of epithelial cells. J. Cell. Physiol. 200: 277,290, 2004. © 2004 Wiley-Liss, Inc. [source]


    Melatonin increases stress fibers and focal adhesions in MDCK cells: participation of Rho-associated kinase and protein kinase C

    JOURNAL OF PINEAL RESEARCH, Issue 2 2007
    Gerardo Ramírez-Rodríguez
    Abstract:, Melatonin cyclically modifies water transport measured as dome formation in MDCK cells. An optimal increase in water transport, concomitant with elevated stress fiber (SF) formation, occurs at nocturnal plasma melatonin concentrations (1 nm) after 6 hr of incubation. Blockage in melatonin-elicited dome formation was observed with protein kinase C (PKC) inhibitors. Despite, this information on the precise mechanism by which melatonin increases SF formation involved in water transport is not known. Focal adhesion contacts (FAC) are cytoskeletal structures, which participate in MDCK membrane polarization. SF organization and vinculin phosphorylation are involved in FAC assembly and both processes are mediated by PKC, an enzyme stimulated by melatonin; in these processes also involved is Rho-associated kinase (ROCK). Thus, we studied FAC formation and the ROCK/PKC pathway as the mechanism by which melatonin increases SF formation and water transport. The results showed that 1 nM melatonin and the PKC agonist phorbol-12-miristate-13-acetate increased FAC. The PKC inhibitor GF109203x, and the ROCK inhibitor Y27632, blocked increased FAC caused by melatonin. ROCK and PKC activities, vinculin phosphorylation and FAC formation were increased with melatonin. The PKC inhibitor, GF109203x, abolished both melatonin stimulated FAC in whole cells and ROCK activity, indicating that ROCK is a downstream kinase in the melatonin-stimulated PKC pathway in MDCK cultured cells that causes an increase in SF and FAC formation. Data also document that melatonin modulates water transport through modifications of the cytoskeletal structure. [source]


    Zoledronate inhibits endothelial cell adhesion, migration and survival through the suppression of multiple, prenylation-dependent signaling pathways

    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 1 2007
    M. HASMIM
    Summary.,Background: Recent evidence indicates that zoledronate, a nitrogen-containing bisphosphonate used to treat conditions of increased bone resorption, may have anti-angiogenic activity. The endothelial cells signaling events modulated by zoledronate remain largely elusive. Objectives: The aim of this work was to identify signaling events suppressed by zoledronate in endothelial cells and responsible for some of its biological effects. Methods: Human umbilical vein endothelial cells (HUVEC) were exposed to zoledronate, isoprenoid analogs (i.e. farnesol and geranylgeraniol) and various inhibitors of signaling, and the effect on adhesion, survival, migration, actin cytoskeleton and signaling events characterized. Results: Zoledronate reduced Ras prenylation, Ras and RhoA translocation to the membrane, and sustained ERK1/2 phosphorylation and tumor necrosis factor (TNF) induced JNK phosphorylation. Isoprenoid analogs attenuated zoledronate effects on HUVEC adhesion, actin stress fibers and focal adhesions, migration and survival. Isoprenoid analogs also restored Ras prenylation, RhoA translocation to the membrane, sustained FAK and ERK1/2 phosphorylation and prevented suppression of protein kinase B (PKB) and JNK phosphorylation in HUVEC exposed to TNF in the presence of zoledronate. Pharmacological inhibition of Rock, a RhoA target mediating actin fiber formation, phosphatidylinositol 3-kinase, an activator of PKB, MEK1/2, an activator of ERK1/2, and JNK, recapitulated individual zoledronate effects, consistent with the involvement of these molecules and pathways and their inhibition in the zoledronate effects. Conclusions: This work has demonstrated that zoledronate inhibits HUVEC adhesion, survival, migration and actin stress fiber formation by interfering with protein prenylation and has identified ERK1/2, JNK, Rock, FAK and PKB as kinases affected by zoledronate in a prenylation-dependent manner. [source]


    A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells

    BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2010
    Nicholas Ferrell
    Abstract We have developed a bilayer microfluidic system with integrated transepithelial electrical resistance (TEER) measurement electrodes to evaluate kidney epithelial cells under physiologically relevant fluid flow conditions. The bioreactor consists of apical and basolateral fluidic chambers connected via a transparent microporous membrane. The top chamber contains microfluidic channels to perfuse the apical surface of the cells. The bottom chamber acts as a reservoir for transport across the cell layer and provides support for the membrane. TEER electrodes were integrated into the device to monitor cell growth and evaluate cell,cell tight junction integrity. Immunofluorescence staining was performed within the microchannels for ZO-1 tight junction protein and acetylated ,-tubulin (primary cilia) using human renal epithelial cells (HREC) and MDCK cells. HREC were stained for cytoskeletal F-actin and exhibited disassembly of cytosolic F-actin stress fibers when exposed to shear stress. TEER was monitored over time under normal culture conditions and after disruption of the tight junctions using low Ca2+ medium. The transport rate of a fluorescently labeled tracer molecule (FITC-inulin) was measured before and after Ca2+ switch and a decrease in TEER corresponded with a large increase in paracellular inulin transport. This bioreactor design provides an instrumented platform with physiologically meaningful flow conditions to study various epithelial cell transport processes. Biotechnol. Bioeng. 2010;107:707,716. © 2010 Wiley Periodicals, Inc. [source]


    Extracellular and intracellular mechanisms that mediate the metastatic activity of exogenous osteopontin

    CANCER, Issue 8 2009
    Jami Mandelin PhD
    Abstract BACKGROUND: Osteopontin affects several steps of the metastatic cascade. Despite direct correlation with metastasis in experimental systems and in patient studies, the extracellular and intracellular basis for these observations remains unsolved. In this study, the authors used human melanoma and sarcoma cell lines to evaluate the effects of soluble osteopontin on metastasis. METHODS: Exogenous osteopontin or negative controls, including a site-directed mutant osteopontin, were used in functional assays in vitro, ex vivo, and in vivo that were designed to test the extracellular and intracellular mechanisms involved in experimental metastasis. RESULTS: In the extracellular environment, the results confirmed that soluble osteopontin is required for its prometastatic effects; this phenomenon is specific, arginine-glycine-aspartic acid (RGD)-dependent, and evident in experimental models of metastasis. In the intracellular environment, osteopontin initially induced rapid tyrosine 418 (Tyr-418) dephosphorylation of the cellular homolog of the Rous sarcoma virus (c-Src), with decreases in actin stress fibers and increased binding to the vascular endothelium. This heretofore undescribed Tyr dephosphorylation was followed by a tandem c-Src phosphorylation after tumor cell attachment to the metastatic site. CONCLUSIONS: The results of this study revealed a complex molecular interaction as well as a dual role for osteopontin in metastasis that depends on whether tumor cells are in circulation or attached. Such context-dependent functional insights may contribute to antimetastasis strategies. Cancer 2009. © 2009 American Cancer Society. [source]