Home About us Contact | |||
Strength Testing (strength + testing)
Selected AbstractsSeverely impaired neuromuscular synaptic transmission causes muscle weakness in the Cacna1a -mutant mouse rolling NagoyaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007Simon Kaja Abstract The ataxic mouse rolling Nagoya (RN) carries a missense mutation in the Cacna1a gene, encoding the pore-forming subunit of neuronal Cav2.1 (P/Q-type) Ca2+ channels. Besides being the predominant type of Cav channel in the cerebellum, Cav2.1 channels mediate acetylcholine (ACh) release at the peripheral neuromuscular junction (NMJ). Therefore, Cav2.1 dysfunction induced by the RN mutation may disturb ACh release at the NMJ. The dysfunction may resemble the situation in Lambert,Eaton myasthenic syndrome (LEMS), in which autoantibodies target Cav2.1 channels at NMJs, inducing severely reduced ACh release and resulting in muscle weakness. We tested neuromuscular function of RN mice and characterized transmitter release properties at their NMJs in diaphragm, soleus and flexor digitorum brevis muscles. Clinical muscle weakness and fatigue were demonstrated using repetitive nerve-stimulation electromyography, grip strength testing and an inverted grid hanging test. Muscle contraction experiments showed a compromised safety factor of neuromuscular transmission. In ex vivo electrophysiological experiments we found severely impaired ACh release. Compared to wild-type, RN NMJs had 50,75% lower nerve stimulation-evoked transmitter release, explaining the observed muscle weakness. Surprisingly, the reduction in evoked release was accompanied by an ,,3-fold increase in spontaneous ACh release. This synaptic phenotype suggests a complex effect of the RN mutation on different functional Cav2.1 channel parameters, presumably with a positive shift in activation potential as a prevailing feature. Taken together, our studies indicate that the gait abnormality of RN mice is due to a combination of ataxia and muscle weakness and that RN models aspects of the NMJ dysfunction in LEMS. [source] Bonding characteristics of newly developed all-in-one adhesivesJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2007S. K. Sidhu Abstract This study evaluated the microtensile bond strength and the interfacial morphology of newer adhesives. The occlusal surfaces of extracted teeth were ground flat for random allocation to four equal groups. Resin composite was bonded to each surface using either Clearfil SE Bond [SEB], Clearfil Protect Bond [PB], G-Bond [GB], or an experimental adhesive, SSB-200 [SSB]. After storage for 24 h in water at 37°C, they were sectioned into beams (cross-sectional area 1 mm2) for microtensile bond strength testing (,TBS) at a crosshead speed of 1 mm/min. The load at failure of each was recorded; the data were analyzed by one-way ANOVA and Games Howell tests. The surfaces of the fractured specimens were observed using SEM. For the ultra-morphology of the interface, the occlusal surfaces of four more teeth were prepared as before and a thin layer of flowable resin composite was bonded to each surface using one of the four adhesives. The mean ,TBS ranged from 39.68 MPa (GB) to 64.97 MPa (SEB). There were no statistical differences between SEB and SSB, or between PB and GB (p > 0.05). The ,TBS of SEB and SSB were significantly greater than that of PB and GB (p < 0.05). SEMs of the fractured surfaces revealed a mixed (cohesive/interfacial) failure. TEM examination highlighted differences in the hybrid layer; SEB had a thicker layer than the others. In conclusion, the newer all-in-one adhesives produced a thin hybrid layer but varied in their bond strengths. The 2-step self-etching adhesives do not necessarily produce higher bond strengths than that of the all-in-one systems. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2007 [source] The influence of fibre placement and position on the efficiency of reinforcement of fibre reinforced composite bridgeworkJOURNAL OF ORAL REHABILITATION, Issue 8 2001A. E. Ellakwa The effect of placement of ultra-high molecular weight polyethylene (UHMWPE) fibres on the flexural properties and fracture resistance of a direct dental composite was investigated. The UHMWPE fibres are increasingly being used for the reinforcement of laboratory fabricated resin composite crown and bridgework. The aim of this study was to assess the effect of a commonly used laboratory fabrication variable on the in vitro strength of beam shaped specimen simulating a three-unit fixed bridge. Four groups (10 specimens per group) of Herculite XRV were prepared for flexural modulus and strength testing after reinforcement with UHMWPE fibres. Two groups of control specimens were prepared without any fibre reinforcement. Half the specimen groups were stored in distilled water and the other groups were stored dry, both at 37 °C for 2 weeks before testing. The results of this study showed that placement of fibre at or slightly away from the tensile side improved the flexural properties of the composite in comparison with the unreinforced control specimen groups whilst the mode of failure differed according to fibre position. Scanning electron microscope (SEM) investigation revealed that placement of the fibre slightly away from the tensile side favoured crack development and propagation within the resin bridging the interfibre spaces in addition to debonding parallel to the direction of fibre placement. Laboratory fabrication variables may effect the strength of fibre reinforced bridgework significantly. [source] A prospective analysis of incidence and severity of quadriceps inhibition in a consecutive sample of 100 patients with complete acute anterior cruciate ligament ruptureJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2004Terese L. Chmielewski Background: Weakness of the quadriceps femoris muscle after anterior cruciate ligament injury and reconstruction has been attributed to incomplete voluntary activation of the muscle. The literature is conflicting on the incidence of incomplete voluntary quadriceps activation after anterior cruciate ligament injury because of differences in testing methods and population biases. The purpose of this study was to systematically examine the incidence and severity of quadriceps voluntary activation failure in both lower extremities after acute anterior cruciate ligament injury. We hypothesized that the incidence of quadriceps inhibition would be higher in the anterior cruciate ligament injured limbs than the uninvolved limbs, that the incidence of inhibition in the anterior cruciate ligament deficient limbs would be larger than in our historical sample of healthy young individuals tested in the same manner and that there would be no difference in inhibition by gender. Study design: Prospective, descriptive. Methods: One hundred consecutive patients with acute anterior cruciate ligament rupture (39 women and 61 men) were tested when range of motion was restored and effusion resolved, an average of 6 weeks after injury. A burst superimposition technique was used to assess quadriceps muscle activation and strength in all patients. Dependent t -tests were used to compare side-to-side differences in quadriceps strength. Independent t -tests were used to compare incidence of activation failure by gender and make comparisons to historical data on young, active individuals. Results: The average involved side quadriceps activation was 0.92, and ranged from 0.60 to 1.00. The incidence of incomplete activation in the involved side quadriceps was 33 per cent and uninvolved side quadriceps was 31 per cent after acute anterior cruciate ligament rupture. The incidence of incomplete activation bilaterally was 21 per cent. There was no difference in incidence of quadriceps inhibition by gender. Conclusion: The incidence of voluntary quadriceps inhibition on the involved side was three times that of uninjured, active young subjects, but the magnitude was not large. The incidence of quadriceps inhibition on the uninjured side was similar to the injured side. Clinical relevance: Both the incidence and magnitude of quadriceps inhibition after ACL rupture are lower than have previously been reported. The conventional wisdom, therefore, that quadriceps inhibition is a significant problem in this population is challenged by the results of this study. Differences between this study and others include sufficient practice to ensure a maximal effort contraction and rigorous inclusion criteria. The findings have implications for strength testing as well as rehabilitation. The quadriceps index, an assessment of the injured side quadriceps strength deficit may be affected by the presence of voluntary activation failure in the uninvolved side. © 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source] Effect of Aluminum Oxide Addition on the Flexural Strength and Thermal Diffusivity of Heat-Polymerized Acrylic ResinJOURNAL OF PROSTHODONTICS, Issue 6 2008Ayman E. Ellakwa BDS Abstract Purpose: This work was undertaken to investigate the effect of adding from 5% to 20% by weight aluminum oxide powder on the flexural strength and thermal diffusivity of heat-polymerized acrylic resin. Materials and Methods: Seventy-five specimens of heat-polymerized acrylic resin were fabricated. The specimens were divided into five groups (n = 15) coded A to E. Group A was the control group (i.e., unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with aluminum oxide (Al2O3) powder to achieve loadings of 5%, 10%, 15%, and 20% by weight. Specimens were stored in distilled water at 37°C for 1 week before flexural strength testing to failure (5 mm/min crosshead speed) in a universal testing machine. Results were analyzed by one-way analysis of variance and post hoc Tukey paired group comparison tests (p < 0.05). Weibull analysis was used to calculate the Weibull modulus, characteristic strength, and the required stress for 1% and 5% probabilities of failure. Cylindrical test specimens (5 specimens/group) containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). Results: The mean flexural strength values of the heat-polymerized acrylic resin were (in MPa) 99.45, 119.92, 121.19, 130.08, and 127.60 for groups A, B, C, D, and E, respectively. The flexural strength increased significantly after incorporation of 10% Al2O3. The mean thermal diffusivity values of the heat-polymerized acrylic resin (in m2/sec) were 6.8, 7.2, 8.0, 8.5, and 9.3 for groups A, B, C, D, and E, respectively. Thermal diffusivities of the composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler, which suggested that the proper distribution of alumina powders through the insulating polymer matrix might form a pathway for heat conduction. Conclusion: Al2O3 fillers have potential as added components in denture bases to provide increased flexural strength and thermal diffusivity. Increasing the flexural strength and heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction. [source] An In Vitro Investigation of a Comparison of Bond Strengths of Composite to Etched and Air-Abraded Human Enamel SurfacesJOURNAL OF PROSTHODONTICS, Issue 1 2006G.B. Gray BDS Purpose: The purposes of the study were to measure the tensile bond strength of composite resin to human enamel specimens that had been either etched or air-abraded, and to compare the quality of the marginal seal, through the assessment of microleakage, of composite resin to human enamel specimens that had been either etched or air-abraded. Materials and Methods: Thirty mandibular molar teeth were decoronated and sectioned mesio-distally to produce six groups, each containing ten specimens that were embedded in acrylic resin using a jig. In each of the four treatment groups, the specimen surfaces were treated by either abrasion with 27 or 50 ,m alumina at 4 mm or 20 mm distance, and a composite resin was bonded to the treated surfaces in a standardized manner. In the two control groups the specimens were treated with 15 seconds exposure to 36% phosphoric acid gel and then similarly treated before being stored in sterile water for 1 week. All specimens were then subjected to tensile bond strength testing at either 1 or 5 mm/min crosshead speed. For the microleakage study, the degree of dye penetration was measured 32 times for each treatment group, using a neutral methylene blue dye at the interface between composite and either 27 or 50 ,m air-abraded tooth structure or etched enamel surfaces. Results: The mean bond strength values recorded for Group 1 (phosphoric acid etch, 5 mm/min crosshead speed) was 25.4 MPa; Group 2 (phosphoric acid etch, 1 mm/min), 22.2 MPa; Group 3 (27 ,m alumina at 4 mm distance), 16.8 MPa; Group 4 (50 ,m alumina at 4 mm distance), 16.9 MPa; Group 5 (27 ,m alumina at 20 mm distance), 4.2 MPa; and for Group 6 (50 ,m alumina at 20 mm distance) 3.4 MPa. An analysis of variance (ANOVA) demonstrated significant differences among the groups, and a multiple comparison test (Tukey) demonstrated that conventionally etched specimens had a greater bond strength than air-abraded specimen groups. No significant difference in dye penetration could be demonstrated among the groups (p= 0.58). Conclusions: Composite resin applied to enamel surfaces prepared using an acid etch procedure exhibited higher bond strengths than those prepared with air abrasion technology. The abrasion particle size did not affect the bond strength produced, but the latter was adversely affected by the distance of the air abrasion nozzle from the enamel surface. The crosshead speed of the bond testing apparatus had no effect on the bond strengths recorded. The marginal seal of composite to prepared enamel was unaffected by the method of enamel preparation. [source] Bauteiloberfläche und Schwingfestigkeit , Untersuchungen zum Einfluss der Randschicht auf die Dauerschwingfestigkeit von Bauteilen aus StahlMATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, Issue 5 2006U. Kleemann Dipl.-Ing. surface; surface layer; fatigue strength; surface stress-concentration factor Abstract Die Berechnung der Schwingfestigkeit hat in den letzten Jahren für die Bauteilentwicklung an Bedeutung gewonnen. Aus Zeit- und Kostengründen wird angestrebt, den experimentellen Festigkeitsnachweis auf die Freigabe von Sicherheitsteilen zu beschränken. Die Schwingfestigkeit von glatten, polierten Werkstoffproben (Spannungs- und Dehnungswöhlerlinie) kann heute mit guter Treffsicherheit abgeschätzt bzw. entsprechenden Katalogen entnommen werden. Die Übertragbarkeit der Schwingfestigkeit von Werkstoffproben auf reale Bauteile ist jedoch mit erheblichen Schwierigkeiten verbunden, da eine Reihe von Einflussgrößen zu berücksichtigen sind wie Geometrie und Größe, Mittelspannung, Beanspruchungsart, Mehrachsigkeit, Randschicht (Oberflächentopographie, Eigenspannungen, Gefüge, Härte), Temperatur, korrosive Medien u.,a.. Der Einfluss dieser Größen ist komplex und lässt sich nur sehr grob durch eine Multiplikation von Einflussfaktoren beschreiben. Der heutige Stand im Technischen Regelwerk zum Oberflächeneinfluss, z.,B. FKM-Richtlinie ,Rechnerischer Festigkeitsnachweis für Maschinenbauteile", basiert auf einem Kenntnisstand, der 50 Jahre zurückliegt. Der Ausgang für das Forschungsvorhaben war die Forderung der Industrie nach einer verbesserten rechnerischen Erfassung des Einflusses der Oberflächenbearbeitung bei Zerspanung. Hierzu wurde auf einen Vorschlag von Liu zurückgegriffen, der die Oberflächentopographie neben der Rauheit durch eine Oberflächenformzahl kennzeichnet. Zur Erfassung des Werkstoffes wird eine charakteristische Strukturlänge eingeführt, die sich aus der Werkstoffwechselfestigkeit und dem Schwellenwert für makroskopischen Rissfortschritt berechnet. Weiterhin wurde überprüft, welche Festigkeitshypothesen in der Lage sind, den biaxialen Eigenspannungszustand an der zerspanten Oberfläche realistisch zu erfassen. Damit kann ein Konzept vorgeschlagen werden, mit dem die Dauerfestigkeit zutreffend berechnet werden kann, wenn die statische Festigkeit, die Oberflächentopographie und die Eigenspannungen bekannt sind. Zur Validierung werden Schwingversuche an drei Stählen und zwei Sphärogusslegierungen bei unterschiedlichen Randschichteigenschaften durchgeführt. Structural component surface and fatigue strength , Investigations on the effect of the surface layer on the fatigue strength of structural steel components For the development of structural components, the importance of calculating the fatigue strength has steadily increased during recent years. In order to save time and cost, efforts are in progress for limiting experimental strength testing to the release of safety components. The fatigue strength of smooth, polished material specimens (stress and strain S-N curve) can now be estimated with high accuracy, or can be obtained from the corresponding catalogs. However, the results of fatigue strength determinations on material specimens cannot be applied to real components without considerable difficulty, since a number of decisive parameters must be taken into account. These factors include the geometry and size, mean stress, type of load, multiaxiality, surface layer (surface topography, residual stresses, structure, hardness), temperature, corrosive media, etc. The effect of these parameters is complex, and a multiplication of the various decisive factors yields only a very rough description. The current state of the art in the catalog of technical rules on surface effects, such as the FKM guideline, "Computational Demonstration of Strength for Machine Components", is based on results which were obtained 50 years ago. The original incentive for the research project was the industrial demand for an improved computational method for determining the effect of surface machining by cutting processes. For this purpose, recourse was made to a proposal by Liu, who characterises the surface topography, besides the roughness, with the use of a surface stress-concentration factor. A characteristic structural length is introduced for describing the material; this length is calculated from the fatigue strength of the material and the threshold value for macroscopic crack propagation. Moreover, a check was made to determine which strength hypotheses are capable of realistically describing the biaxial residual stress state on the machined surface. Thus, a concept can be proposed for accurately calculating the fatigue strength, provided that the static strength, the surface topography, and the residual stresses are known. For validation, alternating-load tests are to be performed on three types of steel and two nodular cast alloys with different surface layer properties. [source] Cerebral Palsy: Results of Surgical Releases Augmented with Electrical Stimulation: A Case StudyNEUROMODULATION, Issue 2 2002James J. McCarthy MD Abstract The purpose of this case study was to evaluate a patient with diplegic cerebral palsy who underwent soft tissue lengthening augmented with intramuscular electrical stimulation. This is a prospective case study, pre- and post-test design. The patient underwent soft tissue lengthenings of the lower extremities, augmented with placement of intramuscular neuromuscular electrodes. Baseline, 4-, 8-, and 12-month follow-up data were obtained which included range of motion, manual muscle strength testing, motion analysis, oxygen consumption, Gross Motor Function Measure, and Pediatric Evaluation of Disability Inventory. All measured parameters, except knee extensor strength, improved during the postoperative period (baseline to 4-month follow-up) and continued to improve during the rehabilitative period (4,12 month follow-up), despite no formal therapy or home exercise program during this period. We conclude that surgical releases augmented with electrical stimulation resulted in a satisfactory clinic outcome, and may offer a new approach to the treatment of patients with cerebral palsy. [source] Effect of single and multi-joint lower extremity muscle strength on the functional capacity and ADL/IADL status in Japanese community-dwelling older adultsNURSING & HEALTH SCIENCES, Issue 3 2007Masako Azegami rn Abstract Forty-seven community-dwelling older adults aged >70 years participated in this Japanese cross-sectional study to determine the relationship between the isometric lower extremity muscle strength measured during knee extension (KE) in single-joint and total leg extension (TLE) in multi-joint tasks, physical performance tests, and functional status. The physical performance was determined by KE and TLE muscle strength, walking capacity, and balance performance tests, while the functional status was evaluated by interview using basic activities of daily living (ADL) and instrumental activities of daily living (IADL) tools. The results indicated that the TLE muscle strength was significantly related to all the other performance tests, while the KE muscle strength was not correlated with the balance test. Also, the bilateral TLE muscle strength was significantly associated with IADL status compared with the KE muscle strength. In conclusion, multi-joint muscle strength testing might be superior to single-joint muscle strength testing for the screening of the functional impairments of older adults. [source] Development of a New Tissue-Engineered Sheet for Reconstruction of the StomachARTIFICIAL ORGANS, Issue 10 2009Masato Araki Abstract We have developed tissue-engineered digestive tracts composed of collagen scaffold and an inner silicon sheet and successfully used it to repair defects in parts of the esophagus, stomach, and small intestine. However, some improvements were demanded for clinical usage because the silicon sheet presented technical difficulties for suturing and endoscopic removal. New tissue-engineered sheet (New-sheet) was composed of a single-piece and reinforced collagen scaffold with biodegradable copolymer. One beagle dog was used to evaluate whether New-sheet could withstand suturing in comparison with native digestive tracts using a tensile tester. Seven beagle dogs had a 5-cm circular defect created in the stomach. New-sheet soaked with autologous peripheral blood or bone marrow aspirate was sutured to the gastric wall. Endoscopic, histological, and immunohistochemical assessment was performed to evaluate regeneration of the stomach up to 16 weeks. Tensile strength testing showed that the mucosal side of New-sheet had strength almost equivalent to the mucosa of the esophagus (P = 0.61). Endoscopically, regeneration of the mucosa started from the circumference after 4 weeks, but a small linear ulcer was still evident at 16 weeks. The regenerated stomach shrank by 60,80% of its original size and histologically showed villous mucosa and underlying dense connective tissue. Immunohistochemically, the regenerated area expressed ,-smooth-muscle actin but was negative for basic calponin, irrespective of the source of soaked blood. New-sheet shows sufficient strength for suturing, no dehiscence, and better biocompatibility for clinical use, although further examination will be necessary to create a functional digestive tract. [source] CAD/CAM to fabricate ceramic implant abutments and crowns: a preliminary in vitro studyAUSTRALIAN DENTAL JOURNAL, Issue 1 2009MA Alfarsi Abstract Background:, This study evaluated the feasibility of fabricating implant abutments and crowns from pre-sintered feldspathic porcelain blocks using the chair-side CAD/CAM, CEREC3D® system. Methods:, Thirty-two implant analogues were divided into two groups. In the control group, prefabricated machined anatomical titanium (Ti) abutments were screw-retained to the analogues. In the test group, machined feldspathic porcelain abutments were cemented on prefabricated machined Ti links and screw-retained to the implant analogues. These feldspathic porcelain abutments were fabricated out of pre-sintered feldspathic porcelain blocks as duplicates of the abutments in the control group using the CAD/CAM, CEREC3D® system. Thirty-two feldspathic porcelain crowns, also fabricated out of pre-sintered ceramic blocks, were then cemented with resin cement on all the abutments in both groups. All samples were subsequently subjected to fracture strength testing under static load. An unpaired t-test was used to compare fracture load values between the two groups. Results:, The test group using feldspathic porcelain abutments and crowns showed statistically significant higher mean fracture strength than the control group with the Ti abutments and feldspathic porcelain crowns. Conclusions:, This preliminary study showed that the chair-side CAD/CAM technology can be utilized to fabricate customized ceramic abutments with their associated ceramic crowns using pre-sintered feldspathic porcelain blocks. [source] |