Stream Width (stream + width)

Distribution by Scientific Domains


Selected Abstracts


Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams

FRESHWATER BIOLOGY, Issue 9 2005
JANI HEINOArticle first published online: 3 AUG 200
Summary 1. Biodiversity,environment relationships are increasingly well-understood in the context of species richness and species composition, whereas other aspects of biodiversity, including variability in functional diversity (FD), have received rather little rigorous attention. For streams, most studies to date have examined either taxonomic assemblage patterns or have experimentally addressed the importance of species richness for ecosystem functioning. 2. I examined the relationships of the functional biodiversity of stream macroinvertebrates to major environmental and spatial gradients across 111 boreal headwater streams in Finland. Functional biodiversity encompassed functional richness (FR , the number of functional groups derived from a combination of functional feeding groups and habit trait groups), FD , the number of functional groups and division of individuals among these groups, and functional evenness (FE , the division of individuals among functional groups). Furthermore, functional structure (FS) comprised the composition and abundance of functional groups at each site. 3. FR increased with increasing pH, with additional variation related to moss cover, total nitrogen, water colour and substratum particle size. FD similarly increased with increasing pH and decreased with increasing canopy cover. FE decreased with increasing canopy cover and water colour. Significant variation in FS was attributable to pH, stream width, moss cover, substratum particle size, nitrogen, water colour with the dominant pattern in FS being related to the increase of shredder-sprawlers and the decrease of scraper-swimmers in acidic conditions. 4. In regression analysis and redundancy analysis, variation in functional biodiversity was not only related to local environmental factors, but a considerable proportion of variability was also attributable to spatial patterning of environmental variables and pure spatial gradients. For FR, 23.4% was related to pure environmental effects, 15.0% to shared environmental and spatial effects and 8.0% to spatial trends. For FD, 13.8% was attributable to environmental effects, 15.2% to shared environmental and spatial effects and 5% to spatial trends. For FE, 9.0% was related to environmental variables, 12.7% to shared effects of environmental and spatial variables and 4.5% to spatial variables. For FS, 13.5% was related to environmental effects, 16.9% to shared environmental and spatial effects and 15.4% to spatial trends. 5. Given that functional biodiversity should portray variability in ecosystem functioning, one might expect to find functionally rather differing ecosystems at the opposite ends of major environmental gradients (e.g. acidity, stream size). However, the degree to which variation in the functional biodiversity of stream macroinvertebrates truly portrays variability in ecosystem functioning is difficult to judge because species traits, such as feeding roles and habit traits, are themselves strongly affected by the habitat template. 6. If functional characteristics show strong responses to natural environmental gradients, they also are likely to do so to anthropogenic environmental changes, including changes in habitat structure, organic inputs and acidifying elements. However, given the considerable degree of spatial structure in functional biodiversity, one should not expect that only the local environment and anthropogenic changes therein are responsible for this variability. Rather, the spatial context, as well as natural variability along environmental gradients, should also be explicitly considered in applied research. [source]


Geomorphology and fish assemblages in a Piedmont river basin, U.S.A.

FRESHWATER BIOLOGY, Issue 11 2003
D. M. Walters
Summary 1.,We investigated linkages between fishes and fluvial geomorphology in 31 wadeable streams in the Etowah River basin in northern Georgia, U.S.A. Streams were stratified into three catchment sizes of approximately 15, 50 and 100 km2, and fishes and geomorphology were sampled at the reach scale (i.e. 20,40 times stream width). 2.,Non-metric multidimensional scaling (NMDS) identified 85% of the among-site variation in fish assemblage structure and identified strong patterns in species composition across sites. Assemblages shifted from domination by centrarchids, and other pool species that spawn in fine sediments and have generalised food preferences, to darter-cyprinid-redhorse sucker complexes that inhabit riffles and runs, feed primarily on invertebrates, and spawn on coarser stream beds. 3.,Richness and density were correlated with basin area, a measure of stream size, but species composition was best predicted (i.e. |r| between 0.60,0.82) by reach-level geomorphic variables (stream slope, bed texture, bed mobility and tractive force) that were unrelated to stream size. Stream slope was the dominant factor controlling stream habitat. Low slope streams had smaller bed particles, more fines in riffles, lower tractive force and greater bed mobility compared with high slope streams. 4.,Our results contrast with the ,River Continuum Concept' which argues that stream assemblages vary predictably along stream size gradients. Our findings support the ,Process Domains Concept', which argues that local-scale geomorphic processes determine the stream habitat and disturbance regimes that influence stream communities. [source]


Drawdown and Stream Depletion Produced by Pumping in the Vicinity of a Partially Penetrating Stream

GROUND WATER, Issue 5 2001
James J. Butler Jr.
Commonly used analytical approaches for estimation of pumping-induced drawdown and stream depletion are based on a series of idealistic assumptions about the stream-aquifer system. A new solution has been developed for estimation of drawdown and stream depletion under conditions that are more representative of those in natural systems (finite width stream of shallow penetration adjoining an aquifer of limited lateral extent). This solution shows that the conventional assumption of a fully penetrating stream will lead to a significant overestimation of stream depletion (> 100%) in many practical applications. The degree of overestimation will depend on the value of the stream leakance parameter and the distance from the pumping well to the stream. Although leakance will increase with stream width, a very wide stream will not necessarily be well represented by a model of a fully penetrating stream. The impact of lateral boundaries depends upon the distance from the pumping well to the stream and the stream leakance parameter. In most cases, aquifer width must be on the order of hundreds of stream widths before the assumption of a laterally infinite aquifer is appropriate for stream-depletion calculations. An important assumption underlying this solution is that stream-channel penetration is negligible relative to aquifer thickness. However, an approximate extension to the case of nonnegligible penetration provides reasonable results for the range of relative penetrations found in most natural systems (up to 85%). Since this solution allows consideration of a much wider range of conditions than existing analytical approaches, it could prove to be a valuable new tool for water management design and water rights adjudication purposes. [source]


Changes of taxonomic and trophic structure of fish assemblages along an environmental gradient in the Upper Beni watershed (Bolivia)

JOURNAL OF FISH BIOLOGY, Issue 1 2006
M. Pouilly
The distribution and the diet of 28 fish species were evaluated, during the dry season, in 12 streams of the Upper Beni watershed (Amazon basin, Bolivia). The 12 streams were of similar size (stream width and water depth) but situated on a gradient of altitude in the Andean and sub-Andean areas. The environmental conditions in the stream changed in relation to the altitude. As altitude decreased, slope and water velocity also decreased, while temperature, conductivity, pH and the proportion of pools increased. Although the diets of the species were mainly based on two aquatic autochthonous food resources, invertebrates and sediment, species were classified into five trophic guilds: detritivores, algivores, piscivores, invertivores-omnivores and aquatic specialist invertivores. In all streams invertivores dominated or co-dominated with detritivores. The trophic structure of the assemblages, however, changed in relation to the environmental gradient. The fish species richness increased and the trophic composition became more diverse at lower altitudes, when slope decreased and temperature increased. At the same time, the relative number of invertivore species decreased, whereas the relative number of detritivore, algivore and piscivore species increased. Decreasing altitude appeared to play a role similar to increasing stream size along the longitudinal gradient. This could be explained by geomorphological and temperature variations that may generate environmental conditions favourable to an increase of productivity. [source]


Drawdown and Stream Depletion Produced by Pumping in the Vicinity of a Partially Penetrating Stream

GROUND WATER, Issue 5 2001
James J. Butler Jr.
Commonly used analytical approaches for estimation of pumping-induced drawdown and stream depletion are based on a series of idealistic assumptions about the stream-aquifer system. A new solution has been developed for estimation of drawdown and stream depletion under conditions that are more representative of those in natural systems (finite width stream of shallow penetration adjoining an aquifer of limited lateral extent). This solution shows that the conventional assumption of a fully penetrating stream will lead to a significant overestimation of stream depletion (> 100%) in many practical applications. The degree of overestimation will depend on the value of the stream leakance parameter and the distance from the pumping well to the stream. Although leakance will increase with stream width, a very wide stream will not necessarily be well represented by a model of a fully penetrating stream. The impact of lateral boundaries depends upon the distance from the pumping well to the stream and the stream leakance parameter. In most cases, aquifer width must be on the order of hundreds of stream widths before the assumption of a laterally infinite aquifer is appropriate for stream-depletion calculations. An important assumption underlying this solution is that stream-channel penetration is negligible relative to aquifer thickness. However, an approximate extension to the case of nonnegligible penetration provides reasonable results for the range of relative penetrations found in most natural systems (up to 85%). Since this solution allows consideration of a much wider range of conditions than existing analytical approaches, it could prove to be a valuable new tool for water management design and water rights adjudication purposes. [source]


Restoring Stream Ecosystems: Lessons from a Midwestern State

RESTORATION ECOLOGY, Issue 3 2004
Ashley H. Moerke
Abstract Reach-scale stream restorations are becoming a common approach to repair degraded streams, but the effectiveness of these projects is rarely evaluated or reported. We surveyed governmental, private, and nonprofit organizations in the state of Indiana to determine the frequency and nature of reach-scale stream restorations in this midwestern U.S. state. For 10 attempted restorations in Indiana, questionnaires and on-site assessments were used to better evaluate current designs for restoring stream ecosystems. At each restoration site, habitat and water quality were evaluated in restored and unrestored reaches. Our surveys identified commonalities across all restorations, including the type of restoration, project goals, structures installed, and level of monitoring conducted. In general, most restorations were described as stream-relocation projects that combined riparian and in-stream enhancements. Fewer than half of the restorations conducted pre- or post-restoration monitoring, and most monitoring involved evaluations of riparian vegetation rather than aquatic variables. On-site assessments revealed that restored reaches had significantly lower stream widths and greater depths than did upstream unrestored reaches, but riparian canopy cover often was lower in restored than in unrestored reaches. This study provides basic information on midwestern restoration strategies, which is needed to identify strengths and weaknesses in current practices and to better inform future stream restorations. [source]