Strain Energy Release Rate (strain + energy_release_rate)

Distribution by Scientific Domains


Selected Abstracts


Fracture and fatigue study of unidirectional glass/epoxy laminate under different mode of loading

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 5 2010
M. KENANE
ABSTRACT Interlaminar fracture is the dominant failure mechanism in most advanced composite materials. The delaminating behaviour of materials is quantified in terms of the strain energy release rate,G. In this paper, the experimental measurements of the fatigue delaminating growth for some combinations of energy release rate mode ratio have been carried out on unidirectional glass/epoxy laminates. On this base the constants in the Paris equation have been determined for each GII/GT considered modal ratio. The fatigue threshold strain energy release rate ,,GTth, below which delaminating doesn't occur, were measured. Three type specimens were tested, namely: double cantilever beam (DCB), end-loaded split (ELS) and mixed-mode bending (MMB) under mode I, mode II and mixed-mode (I + II) loading, respectively. Scanning electron microscopy techniques were used to identify the fatigue delamination growth mechanisms and to define the differences between the various modes of fracture. [source]


A simple model for the prediction of the fatigue delamination growth of impacted composite panels

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 10 2004
D. G. KATERELOS
ABSTRACT The fatigue behaviour of composite panels that have been subjected to low-velocity impact was studied. Impacted specimens were tested under compression,compression fatigue. A delamination propagation model based on the derivation of the strain energy release rate was used. The stress distribution around the initially induced delamination was derived analytically. The shape of the delamination was experimentally monitored by c-scan imaging and is assumed to be an ellipse. The orientation and aspect ratio of the ellipse were used to calculate the corresponding strain energy-release rates, which were subsequently used to predict the direction of delamination propagation. [source]


Effect of cooling rate and crack propagation direction on the mode 1 interlaminar fracture toughness of biaxial noncrimp warp-knitted fabric composites made of glass/PP commingled yarn

POLYMER COMPOSITES, Issue 3 2008
Yantao Wang
The mode 1 interlaminar fracture toughness of biaxial (±45°) noncrimp warp-knitted fabric composites made of glass/PP commingled yarn was investigated. The crack propagation along the warp and weft directions, respectively, was considered for the composites cooled at two different rates during laminate molding. The interlaminar fracture toughness was characterized by determining the critical strain energy release rate (GIC) of initiation and propagation measured from the double cantilever beam tests. In the case of a slow cooling rate (1°C/min), most specimens possess pure interlaminar crack propagation and direction-independence characteristics. Nevertheless, the high-cooled (10°C/min) specimens fractured in both directions suffer extensive intraply damage (crack branching, debonding, and bridging of 45°-oriented interfacial yarns) and knit thread breakage, leading to GIC of propagation two times higher than that of the slow-cooled specimens, and the clear difference in the GIC values of initiation between the two directions may be due to the contribution of the knit thread breakage to the fracture energy. POLYM. COMPOS., 2008 © 2007 Society of Plastics Engineers [source]


Impact behavior of a short glass fiber reinforced thermoplastic polyurethane

POLYMER COMPOSITES, Issue 3 2000
J. Jancar
The temperature dependence of critical strain energy release rate (Gc,) and standardized Charpy notched impact strength (CNIS) were measured for a thermoplastic polyurethane (TPUR) reinforced with 30 wt% of short glass fibers (SGF) over a temperature interval ranging from ,150°C 23°C (RT) at two strain rates, 70 and 150 s,1, respectively. Fractographic observation of fracture planes was used to qualitatively assess the fracture modes and mechanisms. Adhesion between the reinforcement and the matrix was excellent and the integrity of the fiber-matrix interfacial contact was relatively insensitive to exposure to hydrolysis during the immersion in boiling water for 100 hours. At temperatures above ,30°C, there was a large extent of plastic deformation in the vicinity of crack planes while at temperatures below ,50°C, the extent of plastic deformation was substantially reduced. This resulted in a change in the major energy dissipation mechanism and led to a decrease of both CNIS and Gc, values for SGF/TPUR composites. It was suggested that the plastic deformation of TPUR matrix in the immediate vicinity of glass fibers was the primary source of energy dissipation at temperatures above ,30°C, while the friction and fiber pull-out was the main dissipative process below ,50°C. Over the whole temperature interval investigated, greater Gc, values were obtained at higher strain rate of 150 s,1, without any significant change in the fractographic patterns observed on the fracture planes. The CNIS/Gc, ratio, used to assess suitability of CNIS for comparison of materials, changed with temperature substantially suggesting that the functional dependences of CNIS and Gc, on temperature differ substantially. Hence, CNIS data do not provide a reliable base for material selection and for design purposes in this case. [source]


Oriented crystallization and mechanical properties of polypropylene nucleated on fibrillated polytetrafluoroethylene scaffolds

POLYMER ENGINEERING & SCIENCE, Issue 4 2005
Douwe W. van der Meer
It is known that friction deposited polytetrafluoroethylene (PTFE) layers are able to nucleate crystallization of thin films of isotactic polypropylene (iPP). In order to investigate the influence of PTFE on the crystallization behavior and morphology of iPP in bulk, PTFE-particles of two different sizes in various concentrations were melt-blended with iPP and subsequently processed by injection molding. For one size of particles, high resolution scanning electron microscopy (HR-SEM) showed the presence of a PTFE scaffold consisting of highly fibrillated PTFE particles. With X-ray diffraction (WAXD) pole-figures, it was evidenced that, after melting and recrystallization of the iPP matrix, a strongly oriented crystallization of iPP on this PTFE scaffold takes place (quiescent crystallization conditions). With WAXD it was also shown that under processing conditions, PTFE acts as a nucleating agent for iPP and that PTFE strongly enhances the formation of processing induced morphologies. Impact and tensile performance of the mixtures were measured. Both the strain energy release rate (GI) and the E-modulus were found to increase upon introducing PTFE in iPP. POLYM. ENG. SCI., 45:458,468, 2005. © 2005 Society of Plastics Engineers. [source]