Strains Capable (strain + capable)

Distribution by Scientific Domains

Kinds of Strains Capable

  • bacterial strain capable


  • Selected Abstracts


    Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica

    BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2010
    Tigran V. Yuzbashev
    Abstract Biotechnological production of weak organic acids such as succinic acid is most economically advantageous when carried out at low pH. Among naturally occurring microorganisms, several bacterial strains are known to produce considerable amounts of succinic acid under anaerobic conditions but they are inefficient in performing the low-pH fermentation due to their physiological properties. We have proposed therefore a new strategy for construction of an aerobic eukaryotic producer on the basis of the yeast Yarrowia lipolytica with a deletion in the gene coding one of succinate dehydrogenase subunits. Firstly, an original in vitro mutagenesis-based approach was proposed to construct strains with Ts mutations in the Y. lipolytica SDH1 gene. These mutants were used to optimize the composition of the media for selection of transformants with the deletion in the Y. lipolytica SDH2 gene. Surprisingly, the defects of each succinate dehydrogenase subunit prevented the growth on glucose but the mutant strains grew on glycerol and produced succinate in the presence of the buffering agent CaCO3. Subsequent selection of the strain with deleted SDH2 gene for increased viability allowed us to obtain a strain capable of accumulating succinate at the level of more than 45,g,L,1 in shaking flasks with buffering and more than 17,g,L,1 without buffering. The possible effect of the mutations on the utilization of different substrates and perspectives of constructing an industrial producer is discussed. Biotechnol. Bioeng. 2010;107:673,682. © 2010 Wiley Periodicals, Inc. [source]


    N2 -fixation and complementary chromatic adaptation in non-heterocystous cyanobacteria from Lake Constance

    FEMS MICROBIOLOGY ECOLOGY, Issue 2 2001
    Christine Postius
    Abstract Non-heterocystous, mostly filamentous cyanobacteria were isolated from the crust of stones, from the periphyton of two macrophytes from the littoral zone and from the pelagic environment of Lake Constance. All isolates were cultivated as unialgal strains. DNA analysis by restriction fragment length polymorphism with the psbA gene probe revealed high genetic diversity among the strains from the littoral zone. For all genotypes, the occurrence of the nifH gene encoding a nitrogenase subunit and of genes encoding subunits of phycoerythrin and phycocyanin were tested by Southern blot hybridization. In addition, the isolates were investigated for their ability for complementary chromatic adaptation (CCA) and for anaerobic N2 -fixation. With respect to these characteristics, all cyanobacteria included in this study were assigned to four different types: (1) strains without the capability to fix N2 or to perform CCA of the group III type (CCA III); (2) strains which show both features; (3) strains with the ability to fix nitrogen, but that do not show any CCA III; and (4) strains that produce phycoerythrin, but without the capacity for CCA III or N2 -fixation. By examining the frequency distribution of isolates, these types were shown to prefer different habitats. While cyanobacterial strains capable of N2 -fixation, but without CCA III, were mainly obtained from stone crusts in the supralittoral zone, those with the potential for N2 -fixation as well as for CCA III were largely isolated from submersed macrophytes. Cyanobacteria that produce phycoerythrin, but do not perform CCA III or N2 -fixation, were found in the pelagic zone only. [source]


    Isolation and identification of equol-producing bacterial strains from cultures of pig faeces

    FEMS MICROBIOLOGY LETTERS, Issue 1 2008
    Zhuo-Teng Yu
    Abstract Transformation of daidzein to equol was compared during fermentation of three growth media inoculated with faeces from Erhualian piglets, but equol was produced from only one medium, M1. Two equol-producing strains (D1 and D2) were subsequently isolated using medium M1. Both strains were identified as Eubacterium sp., on the basis of morphological and physiological characteristics, and 16S rRNA gene sequence analysis showed that strains D1 and D2 were most closely related to previously characterized daidzein-metabolizing bacteria isolated from human faecal and rumen samples, respectively. This suggests that the ability to metabolize daidzein can be found among bacteria present within the mammalian intestine. The results provided the first account of conversion of daidzein directly to equol by bacterial species from farm animals. These strains may be of importance to the improvement of animal performance, and the use of medium M1 could provide a simple way to isolate bacterial strains capable of transforming daidzein into equol. [source]


    Enrichment and identification of bacteria capable of reducing chemical oxygen demand of anaerobically treated molasses spent wash

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2004
    M. Ghosh
    Abstract Aims:, The aim of this study was to isolate and identify bacterial strains capable of using recalcitrant compounds of molasses spent wash as sole carbon source from the soils of abandoned sites of distillery effluent discharge and characterize their ability of reducing the chemical oxygen demand (COD) of the spent wash. Methods and Results:, The isolates were grouped into six haplotypes by amplified ribosomal DNA restriction analysis (ARDRA) and BOX-PCR. The phylogenetic position of the representatives of the six main haplotypes strains was determined by 16S rDNA sequencing. They showed maximum similarity to six genera viz. Pseudomonas, Enterobacter, Stenotrophomonas, Aeromonas, Acinetobacter and Klebsiella. The extent of COD (44%) reduced collectively by the six strains was equal to that reduced individually by Aeromonas, Acinetobacter, Pseudomonas and Enterobacter. With spent wash as sole carbon source, the COD reducing strains grew faster at 37°C than 30°C. Conclusions:, Bacterial strains capable of degrading some of the recalcitrant compounds of anaerobically digested molasses spent wash can be isolated from the soils of abandoned sites of distillery effluent discharge. Biostimulation of these bacteria, which can degrade 44% of the carbon compounds of anaerobically digested molasses spent wash can be achieved by nitrogen fertilization and relatively higher temperature. Significance and Impact of the Study:, Supplementation of nitrogen source and controlling the temperature can be used in evolving strategies for in situ bioremediation of anaerobically digested spent wash from distilleries. [source]


    DETERMINATION OF HISTAMINE AND BACTERIAL ISOLATION IN MARLIN FILLETS (MAKAIRA NIGRICANS) IMPLICATED IN A FOODBORNE POISONING

    JOURNAL OF FOOD SAFETY, Issue 3 2010
    H.C. CHEN
    ABSTRACT An incident of foodborne poisoning causing illness in seven victims due to ingestion of marlin fillets occurred in August, 2008, in Kaohsiung City, southern Taiwan. The two suspected marlin samples contained 47.8 and 43.5 mg/100 g of histamine, which is greater than the 5.0 mg/100 g allowable limit suggested by the U.S. Food and Drug Administration. Given the allergy-like symptoms of the victims and the high histamine content in the suspected marlin samples, this foodborne poisoning was strongly suspected to be due to histamine intoxication. Two histamine-producing bacterial strains capable of producing 3.10 ppm and 4.20 ppm of histamine in trypticase soy broth (TSB) supplemented with 1.0% l -histidine (TSBH) were identified as Bacillus subtilis by 16S rDNA sequencing with polymerase chain reaction amplification. However, major histamine-forming bacteria might have been killed during the preparation of fillets before serving and these two B. subtilis isolates might not be the main contributors to histamine accumulation in suspected fillets. PRACTICAL APPLICATIONS Based on the finding that high contents of histamine (>40 mg/100 g) were detected in the suspected marlin samples, we speculate the temperature abuse of the fillets before cooking contributed to the presence of high histamine levels in marlin fillets and resulted in foodborne poisoning. Although two histamine-producing Bacillus subtilis strains were isolated from suspected fish samples, both might not to be the main contributors to histamine accumulation because of low histamine production. These results re-emphasize proper handling temperature for seafoods and offer an important awareness which Makaira nigricans fillets could become a hazardous food item in causing histamine poisoning even though no quality deficiency was observed on the fillets. [source]


    Molecular changes associated with the transmission of avian influenza a H5N1 and H9N2 viruses to humans,

    JOURNAL OF MEDICAL VIROLOGY, Issue 1 2002
    M. Shaw
    Abstract In order to identify molecular changes associated with the transmission of avian influenza A H5N1 and H9N2 viruses to humans, the internal genes from these viruses were compared to sequences from other avian and human influenza A isolates. Phylogenetically, each of the internal genes of all sixteen of the human H5N1 and both of the H9N2 isolates were closely related to one another and fell into a distinct clade separate from clades formed by the same genes of other avian and human viruses. All six internal genes were most closely related to those of avian isolates circulating in Asia, indicating that reassortment with human strains had not occurred for any of these 18 isolates. Amino acids previously identified as host-specific residues were predominantly avian in the human isolates although most of the proteins also contained residues observed previously only in sequences of human influenza viruses. For the majority of the nonglycoprotein genes, three distinct subgroups could be distinguished on bootstrap analyses of the nucleotide sequences, suggesting multiple introductions of avian virus strains capable of infecting humans. The shared nonglycoprotein gene constellations of the human H5N1 and H9N2 isolates and their detection in avian isolates only since 1997 when the first human infections were detected suggest that this particular gene combination may confer the ability to infect humans and cause disease. J. Med. Virol. 66:107,114, 2002. Published 2002 Wiley-Liss, Inc. [source]


    Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine

    BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2009
    Zhi-Gang Qian
    Abstract A four carbon linear chain diamine, putrescine (1,4-diaminobutane), is an important platform chemical having a wide range of applications in chemical industry. Biotechnological production of putrescine from renewable feedstock is a promising alternative to the chemical synthesis that originates from non-renewable petroleum. Here we report development of a metabolically engineered strain of Escherichia coli that produces putrescine at high titer in glucose mineral salts medium. First, a base strain was constructed by inactivating the putrescine degradation and utilization pathways, and deleting the ornithine carbamoyltransferase chain I gene argI to make more precursors available for putrescine synthesis. Next, ornithine decarboxylase, which converts ornithine to putrescine, was amplified by a combination of plasmid-based and chromosome-based overexpression of the coding genes under the strong tac or trc promoter. Furthermore, the ornithine biosynthetic genes (argC-E) were overexpressed from the trc promoter, which replaced the native promoter in the genome, to increase the ornithine pool. Finally, strain performance was further improved by the deletion of the stress responsive RNA polymerase sigma factor RpoS, a well-known global transcription regulator that controls the expression of ca. 10% of the E. coli genes. The final engineered E. coli strain was able to produce 1.68,g,L,1 of putrescine with a yield of 0.168,g,g,1 glucose. Furthermore, high cell density cultivation allowed production of 24.2,g,L,1 of putrescine with a productivity of 0.75,g,L,1,h,1. The strategy reported here should be useful for the bio-based production of putrescine from renewable resources, and also for the development of strains capable of producing other diamines, which are important as nitrogen-containing platform chemicals. Biotechnol. Bioeng. 2009; 104: 651,662 © 2009 Wiley Periodicals, Inc. [source]