Home About us Contact | |||
Background Strains (background + strain)
Selected AbstractsElectroconvulsive seizure thresholds and kindling acquisition rates are altered in mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsionsEPILEPSIA, Issue 7 2009James F. Otto Summary Purpose:, Benign familial neonatal convulsions (BFNC) is caused by mutations in the KCNQ2 and KCNQ3 genes, which encode subunits of the M-type potassium channel. The purpose of this study was to examine the effects of orthologous BFNC-causing mutations on seizure thresholds and the acquisition of corneal kindling in mice with heterozygous expression of the mutations. Methods:, The effects of the Kcnq2 gene A306T mutation and the Kcnq3 gene G311V mutation were determined for minimal clonic, minimal tonic hindlimb extension, and partial psychomotor seizures. The rate of corneal kindling acquisition was also determined for Kcnq2 A306T and Kcnq3 G311V mice. Results:, Seizure thresholds were significantly altered relative to wild-type animals in the minimal clonic, minimal tonic hindlimb extension, and partial psychomotor seizure models. Differences in seizure threshold were found to be dependent on the mutation expressed, the seizure testing paradigm, the genetic background strain, and the gender of the animal. Mutations in Kcnq2 and Kcnq3 were associated with an increased rate of corneal kindling. In the Kcnq2 A306T mice, an increased incidence of death occurred during and immediately following the conclusion of the kindling acquisition period. Conclusions:, These results suggest that genetic alterations in the subunits that underlie the M-current and cause BFNC alter seizure susceptibility in a sex-, mouse strain-, and seizure-test dependent manner. Although the heterozygous mice do not appear to have spontaneous seizures, the increased seizure susceptibility and incidence of death during and after kindling suggests that these mutations lead to altered excitability in these animals. [source] Identification of Candidate Genes for Alcohol Preference by Expression Profiling of Congenic Rat StrainsALCOHOLISM, Issue 7 2007Lucinda G. Carr Background: A highly significant quantitative trait locus (QTL) on chromosome 4 that influenced alcohol preference was identified by analyzing crosses between the iP and iNP rats. Congenic strains in which the iP chromosome 4 QTL interval was transferred to the iNP (NP.P) exhibited the expected increase in alcohol consumption compared with the iNP background strain. This study was undertaken to identify genes in the chromosome 4 QTL interval that might contribute to the differences in alcohol consumption between the alcohol-naïve congenic and background strains. Methods: RNA from 5 brain regions from each of 6 NP.P and 6 iNP rats was labeled and analyzed separately on an Affymetrix Rat Genome 230 2.0 microarray to look for both cis -regulated and trans -regulated genes. Expression levels were normalized using robust multi-chip average (RMA). Differential gene expression was validated using quantitative real-time polymerase chain reaction. Five individual brain regions (nucleus accumbens, frontal cortex, amygdala, hippocampus, and striatum) were analyzed to detect differential expression of genes within the introgressed QTL interval, as well as genes outside that region. To increase the power to detect differentially expressed genes, combined analyses (averaging data from the 5 discrete brain regions of each animal) were also carried out. Results: Analyses within individual brain regions that focused on genes within the QTL interval detected differential expression in all 5 brain regions; a total of 35 genes were detected in at least 1 region, ranging from 6 genes in the nucleus accumbens to 22 in the frontal cortex. Analysis of the whole genome detected very few differentially expressed genes outside the QTL. Combined analysis across brain regions was more powerful. Analysis focused on the genes within the QTL interval confirmed 19 of the genes detected in individual regions and detected 15 additional genes. Whole genome analysis detected 1 differentially expressed gene outside the interval. Conclusions: Cis -regulated candidate genes for alcohol consumption were identified using microarray profiling of gene expression differences in congenic animals carrying a QTL for alcohol preference. [source] REVIEW: Alcohol-related genes: contributions from studies with genetically engineered miceADDICTION BIOLOGY, Issue 3-4 2006John C. Crabbe ABSTRACT Since 1996, nearly 100 genes have been studied for their effects related to ethanol in mice using genetic modifications including gene deletion, gene overexpression, gene knock-in, and occasionally by studying existing mutants. Nearly all such studies have concentrated on genes expressed in brain, and the targeted genes range widely in their function, including most of the principal neurotransmitter systems, several neurohormones, and a number of signaling molecules. We review 141 published reports of effects (or lack thereof) of 93 genes on responses to ethanol. While most studies have focused on ethanol self-administration and reward, and/or sedative effects, other responses studied include locomotor stimulation, anxiolytic effects, and neuroadaptation (tolerance, sensitization, withdrawal). About 1/4 of the engineered mutations increase self-administration, 1/3 decrease it, and about 40% have no significant effect. In many cases, the effects on self-administration are rather modest and/or depend on the specific experimental procedures. In some cases, genes in the background strains on which the mutant is placed are important for results. Not surprisingly, review of the systems affected further supports roles for serotonin, ,-aminobutyric acid, opioids and dopamine, all of which have long been foci of alcohol research. Novel modulatory effects of protein kinase C and G protein-activated inwardly rectifying K+ (GIRK) channels are also suggested. Some newer research with cannabinoid systems is promising, and has led to ongoing clinical trials. [source] Exposure to Oestrogen Prenatally Does Not Interfere with the Normal Female-Typical Development of Odour PreferencesJOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2007J. Bakker The neural mechanisms controlling mate recognition and heterosexual partner preference are sexually differentiated by perinatal actions of sex steroid hormones. We previously showed that the most important action of oestrogen during prenatal development is to defeminise and, to some extent, masculinise brain and behaviour in mice. Female mice deficient in alpha-foetoprotein (AFP) due to a targeted mutation in the Afp gene (AFP-KO) do not show any female sexual behaviour when paired with an active male because they lack the protective action of AFP against maternal oestrogens. In the present study, we investigated whether odour preferences, another sexually differentiated trait in mice, are also defeminised and/or masculinised in AFP-KO females due to their prenatal exposure to oestrogens. AFP-KO females of two background strains (CD1 and C57Bl/6j) preferred to investigate male over female odours when given the choice between these two odour stimuli in a Y-maze, and thus remained very female-like in this regard. Thus, the absence of lordosis behaviour in these females cannot be explained by a reduced motivation of AFP-KO females to investigate male-derived odours. Furthermore, the presence of a strong male-directed odour preference in AFP-KO females suggests a postnatal contribution of oestrogens to the development of preferences to investigate opposite-sex odours. [source] Identification of Candidate Genes for Alcohol Preference by Expression Profiling of Congenic Rat StrainsALCOHOLISM, Issue 7 2007Lucinda G. Carr Background: A highly significant quantitative trait locus (QTL) on chromosome 4 that influenced alcohol preference was identified by analyzing crosses between the iP and iNP rats. Congenic strains in which the iP chromosome 4 QTL interval was transferred to the iNP (NP.P) exhibited the expected increase in alcohol consumption compared with the iNP background strain. This study was undertaken to identify genes in the chromosome 4 QTL interval that might contribute to the differences in alcohol consumption between the alcohol-naïve congenic and background strains. Methods: RNA from 5 brain regions from each of 6 NP.P and 6 iNP rats was labeled and analyzed separately on an Affymetrix Rat Genome 230 2.0 microarray to look for both cis -regulated and trans -regulated genes. Expression levels were normalized using robust multi-chip average (RMA). Differential gene expression was validated using quantitative real-time polymerase chain reaction. Five individual brain regions (nucleus accumbens, frontal cortex, amygdala, hippocampus, and striatum) were analyzed to detect differential expression of genes within the introgressed QTL interval, as well as genes outside that region. To increase the power to detect differentially expressed genes, combined analyses (averaging data from the 5 discrete brain regions of each animal) were also carried out. Results: Analyses within individual brain regions that focused on genes within the QTL interval detected differential expression in all 5 brain regions; a total of 35 genes were detected in at least 1 region, ranging from 6 genes in the nucleus accumbens to 22 in the frontal cortex. Analysis of the whole genome detected very few differentially expressed genes outside the QTL. Combined analysis across brain regions was more powerful. Analysis focused on the genes within the QTL interval confirmed 19 of the genes detected in individual regions and detected 15 additional genes. Whole genome analysis detected 1 differentially expressed gene outside the interval. Conclusions: Cis -regulated candidate genes for alcohol consumption were identified using microarray profiling of gene expression differences in congenic animals carrying a QTL for alcohol preference. [source] Possible Pleiotropic Effects of Genes Specifying Sedative/Hypnotic Sensitivity to Ethanol on Other Alcohol-Related TraitsALCOHOLISM, Issue 10 2002Jeremy C. Owens Background Initial sensitivity to ethanol is a predictor of alcohol abuse that has been studied extensively in both human and animal populations. Selection for initial sensitivity to the sedative/hypnotic effects of ethanol resulted in the long-sleep and short-sleep lines of mice. Some of the genes selected in these lines could also specify differential responses in other ethanol-related phenotypes and, perhaps, for other drugs of abuse. We assessed congenic mice carrying a single quantitative trait locus (QTL) from the inbred long-sleep (ILS) or inbred short-sleep (ISS) strain on the reciprocal background for a number of ethanol- and pentobarbital-related phenotypes. Methods Each congenic strain was tested for ethanol elimination rates at 4.1 g/kg, ethanol-induced ataxia at 2.0 g/kg, ethanol-induced hypothermia at 4.1 g/kg, and pentobarbital-induced loss of righting reflex (LORR) at 60 mg/kg. Additionally, the ILS.ISS congenics were tested for low-dose ethanol-induced activation (LDA) at five doses ranging from 0.6 to 1.2 g/kg ethanol, and the ISS.ILS congenics were tested for LDA at 1.8 g/kg of ethanol. Results There was little difference in the ethanol elimination rate between congenics and background strains, although a modest sex effect was found, with the females eliminating ethanol more rapidly than the males. We were unable to replicate previous differences found in LDA for the Lore1 congenic on the ISS background, because none of the congenics differed from controls for LDA. Lore5 congenics showed a differential effect of pentobarbital-induced LORR in the expected directions. The Lore1 congenics on the ISS background showed more ethanol-induced ataxia than the ISS controls. Additionally, the hypothermic response seems affected by Lore4 and Lore5 and maybe others. Conclusions At least two regions carrying a QTL specifying sensitivity to high doses of ethanol cospecify altered sensitivity in other measures of alcohol action. Specifically, these QTLs clearly affect ethanol-induced hypothermia and pentobarbital-induced LORR and possibly ethanol-induced ataxia. [source] |