Home About us Contact | |||
Background Model (background + model)
Selected AbstractsImaging the lowermost mantle (D,) and the core,mantle boundary with SKKS coda wavesGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2008Ping Wang SUMMARY In our previous studies we developed a method for imaging heterogeneity at and near the core,mantle boundary (CMB) with a generalized Radon transform (GRT) of (transverse component, broad-band) ScS data, and we developed a statistical model for producing images of the D, discontinuity with variable confidence levels. In these applications, the background is smooth and perturbations are represented as contrasts. Here we extend the theory to allow (known) discontinuities, such as the CMB, in the background model. The resulting imaging operator, which is formally not a GRT, can be used, either alone or along with ScS, for the imaging of lowermost mantle structure and, in particular, the D, discontinuity with the scattered SKKS wavefield. Synthetic seismograms calculated with the WKBJ method are used to test the performance of our approach. As a proof of concept, we transform ,38 000 radial component SKKS waveforms into image gathers of a CMB patch beneath Central America. The SKKS image gathers and image traces are in good agreement with the image traces obtained from the GRT transform of ScS data. [source] Radial profiles of seismic attenuation in the upper mantle based on physical modelsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2008Fabio Cammarano SUMMARY Thermally activated, viscoelastic relaxation of the Earth's materials is responsible for intrinsic attenuation of seismic waves. Seismic observations have been used to define layered radially symmetric attenuation models, independent of any constraints on temperature and composition. Here, we interpret free-oscillation and surface wave attenuation measurements in terms of physical structures, by using the available knowledge on the physical mechanisms that govern attenuation at upper-mantle (<400 km) conditions. We find that observations can be explained by relatively simple thermal and grain-size structures. The 1-D attenuation models obtained do not have any sharp gradients below 100 km, but fit the data equally well as the seismic models. The sharp gradients which characterize these models are therefore not required by the data. In spite of the large sensitivity of seismic observations to temperature, a definitive interpretation is limited by the unknown effects of pressure on anelasticity. Frequency dependence of anelasticity, as well as trade-offs with deeper attenuation structure and dependence on the elastic background model, are less important. Effects of water and dislocations can play an important role as well and further complicate the interpretation. Independent constraints on temperature and grain size expected around 100 km depth, help to constrain better the thermal and grain-size profiles at greater depth. For example, starting from a temperature of 1550 K at 100 km and assuming that the seismic attenuation is governed by the Faul & Jackson's (2005) mechanism, we found that negative thermal gradients associated with several cm grain sizes (assuming low activation volume) or an adiabatic gradient associated with ,1 cm grain size, can explain the data. A full waveform analysis, combining the effects on phase and amplitude of, respectively, elasticity and anelasticity, holds promise for further improving our knowledge on the average composition and thermal structure of the upper mantle. [source] Traveltime computation with the linearized eikonal equation for anisotropic mediaGEOPHYSICAL PROSPECTING, Issue 4 2002Tariq Alkhalifah A linearized eikonal equation is developed for transversely isotropic (TI) media with a vertical symmetry axis (VTI). It is linear with respect to perturbations in the horizontal velocity or the anisotropy parameter ,. An iterative linearization of the eikonal equation is used as the basis for an algorithm of finite-difference traveltime computations. A practical implementation of this iterative technique is to start with a background model that consists of an elliptically anisotropic, inhomogeneous medium, since traveltimes for this type of medium can be calculated efficiently using eikonal solvers, such as the fast marching method. This constrains the perturbation to changes in the anisotropy parameter , (the parameter most responsible for imaging improvements in anisotropic media). The iterative implementation includes repetitive calculation of , from traveltimes, which is then used to evaluate the perturbation needed for the next round of traveltime calculations using the linearized eikonal equation. Unlike isotropic media, interpolation is needed to estimate , in areas where the traveltime field is independent of ,, such as areas where the wave propagates vertically. Typically, two to three iterations can give sufficient accuracy in traveltimes for imaging applications. The cost of each iteration is slightly less than the cost of a typical eikonal solver. However, this method will ultimately provide traveltime solutions for VTI media. The main limitation of the method is that some smoothness of the medium is required for the iterative implementation to work, especially since we evaluate derivatives of the traveltime field as part of the iterative approach. If a single perturbation is sufficient for the traveltime calculation, which may be the case for weak anisotropy, no smoothness of the medium is necessary. Numerical tests demonstrate the robustness and efficiency of this approach. [source] Constraints on modified gravity from the observed X-ray luminosity function of galaxy clustersMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009David Rapetti ABSTRACT We use measurements of the growth of cosmic structure, as inferred from the observed evolution of the X-ray luminosity function (XLF) of galaxy clusters, to constrain departures from general relativity (GR) on cosmological scales. We employ the popular growth rate parameterization, ,m(z),, for which GR predicts a growth index ,, 0.55. We use observations of the cosmic microwave background (CMB), type Ia supernovae (SNIa) and X-ray cluster gas mass fractions (fgas), to simultaneously constrain the expansion history and energy content of the Universe, as described by the background model parameters: ,m, w and ,k, i.e. the mean matter density, the dark energy equation of state parameter and the mean curvature, respectively. Using conservative allowances for systematic uncertainties, in particular for the evolution of the mass,luminosity scaling relation in the XLF analysis, we find ,= 0.51+0.16,0.15 and ,m= 0.27 ± 0.02 (68.3 per cent confidence limits), for a flat cosmological constant, cold dark matter (,CDM) background model. Allowing w to be a free parameter, we find ,= 0.44+0.17,0.15. Relaxing the flatness prior in the ,CDM model, we obtain ,= 0.51+0.19,0.16. When in addition to the XLF data we use the CMB data to constrain , through the ISW effect, we obtain a combined constraint of ,= 0.45+0.14,0.12 for the flat ,CDM model. Our analysis provides the tightest constraints to date on the growth index. We find no evidence for departures from GR on cosmological scales. [source] Template fitting and the large-angle cosmic microwave background anomaliesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006Kate Land ABSTRACT We investigate two possible explanations for the large-angle anomalies in the cosmic microwave background (CMB): an intrinsically anisotropic model and an inhomogeneous model. We take as an example of the former a Bianchi model (which leaves a spiral pattern in the sky) and of the latter a background model that already contains a non-linear long-wavelength plane wave (leaving a stripy pattern in the sky). We make use of an adaptation of the ,template' formalism, previously designed to detect galactic foregrounds, to recognize these patterns and produce confidence levels for their detection. The ,corrected' maps, from which these patterns have been removed, are free of anomalies, in particular their quadrupole and octopole are not planar and their intensities are not low. We stress that although the ,template' detections are not found to be statistically significant they do correct statistically significant anomalies. [source] |