Background Electrolyte (background + electrolyte)

Distribution by Scientific Domains


Selected Abstracts


The Dependence of the Sensitivity and Reliability of Contactless Conductivity Detection on the Wall Thickness of Electrophoretic Fused-Silica Capillaries

ELECTROANALYSIS, Issue 3-5 2009
Petr T
Abstract A contactless conductivity detector (C4D) performance has been tested on a simple capillary electrophoretic separation in a standard fused-silica capillary with an external diameter of 360,,m and in a thin-walled capillary (an external diameter of 150,,m); the internal diameters of the two capillaries were identical, equal to 75,,m. Potassium and sodium ions have been separated in a morpholinoethanesulfonic acid/histidine background electrolyte (MES/His), over a wide range of its concentrations (0,100,mM). At low MES/His concentrations, the C4D response, obtained from the height of the potassium peak, is by 100 to 200 per cent higher for the thin-walled capillary and the calibration dependences are linear, in contrast to the thick-walled capillary. These differences between the two capillaries decrease with increasing MES/His concentration, the C4D response in the thin-walled capillary is then higher by mere 20 per cent and the calibration dependences are linear in both the capillaries. The highest sensitivities have been obtained at a MES/His concentration of 50,mM, with LOD values for potassium ion of 2.0 and 2.6,,M, in the thin- and thick-walled capillaries, respectively. The signal-to-noise ratios and the plate counts are generally similar for the two capillaries. It follows from the results that special thin-walled capillaries can be advantageous when background electrolytes with very low conductivities must be employed. [source]


Amperometric Sensor for Heparin: Sensing Mechanism and Application in Human Blood Plasma Analysis

ELECTROANALYSIS, Issue 13-14 2006
Jan Langmaier
Abstract Voltammetric measurements of heparin at a rotating glassy carbon (GC) electrode coated with a polyvinylchloride membrane are reported. A spin-coating technique is used to prepare thin membranes (20,40,,m) with a composition of 25% (w/w) PVC, 1,1,-dimethylferrocene as a reference electron donor for the GC|membrane interface, nitrophenyl octyl ether (o -NPOE) or bis(2-ethylhexyl) sebacate (DOS) as a plasticizer, and hexadecyltrimethylammonium tetrakis(4-chlorophenyl) borate (HTMATPBCl) or tridodecylmethylammonium tetrakis(4-chlorophenyl) borate (TDMATPBCl) as a background electrolyte. It is shown that the electrodes coated with either the HTMA+/o -NPOE (DOS) or TDMA+/o -NPOE (DOS) membrane provide a comparable amperometric response towards heparin (1,10,U mL,1) in the aqueous solution of 0.1,M LiCl. However, only the membranes formulated with TDMATPBCl can be used for an amperometric assay of heparin in human blood plasma with a detection limit of 0.2,U mL,1. Effects of membrane composition, heparin concentration, rotation speed and sweep rate on the voltammetric behavior of heparin provide some insight into the sensing mechanism. Theoretical analysis of the amperometric response is outlined, and the numeric simulation of the voltammetric behavior is presented. [source]


Simultaneous determination of nine endogenous steroids in human urine by polymeric-mixed micelle capillary electrophoresis

ELECTROPHORESIS, Issue 19 2010
Sabrina Flor
Abstract A new CE system based on the use of polymeric-mixed micelles (cholic acid, SDS and the poloxamine Tetronic® 1107) was developed for the simultaneous determination of nine steroids in human urine. This method allows the baseline separation and quantitation of cortisol, androstenedione, estriol, dehydroepiandrosterone sulfate, testosterone, dehydroepiandrosterone, estrone, progesterone and estradiol in less than 25,min showing to be sensitive enough to detect low concentrations of these steroids in urine samples (5,45,ng/mL). The optimized electrophoretic conditions were performed using a 50,cm×75,,m capillary, 18,kV, 25°C, with 44,mM cholic acid, 10,mM SDS, 0.05%,w/v tetronic® 1107, 2.5%,v/v methanol, 2.5%,v/v tetrahydrofuran in 5,mM borate , 5,mM phosphate buffer (pH=8.0) as a background electrolyte and a dual 210/254 UV-detection. The method can simultaneously determine 0.1,120,,g/mL, which corresponds to 5,6000,ng/mL of steroids in 2,mL urine. The recoveries ranged between 82.4 and 101.5%. Due to its simplicity, speed, accuracy and reliability, the proposed method could be a potential alternative to the traditional methodologies used with clinical purposes. [source]


Evaluation of CE methods for global metabolic profiling of urine

ELECTROPHORESIS, Issue 14 2010
Rawi Ramautar
Abstract In this study, the usefulness of noncovalently coated capillaries with layers of charged polymers is investigated to obtain global electrophoretic profiles of urinary metabolites covering a broad range of different compound classes in a highly repeatable way. Capillaries were coated with a bilayer of polybrene (PB) and poly(vinyl sulfonate) (PVS), or with a triple layer of PB, dextran sulfate (DS) and PB. The bilayer and triple layer coatings were evaluated at acidic (pH 2.0) and alkaline (pH 9.0) separation conditions, thereby providing separation conditions for basic and acidic compounds. A representative metabolite mixture and spiked urine samples were used for the evaluation of the four CE methods. Migration time repeatability (RSD<2%) and plate numbers (N, 100,000,400,000) were similar for the test compounds in all CE methods, except for some multivalent ions that may exhibit adsorption to oppositely charged coatings. The analysis of cationic compounds with the PB-DS-PB CE method at low pH (i.e. after the EOF time) provided a larger separation window and number of separated peaks in urine compared to the analysis with the PB-PVS CE method at low pH (i.e. before the EOF time). Approximately, 600 molecular features were detected in rat urine by the PB-DS-PB CE-MS method whereas about 300 features were found with the PB-PVS CE-MS method. This difference can be attributed to reduced comigration of compounds with the PB-DS-PB CE-MS method and a related decrease of ion suppression. With regard to the analysis of anionic compounds by CE-MS, in general analyte responses were significantly lower than that for cationic compounds, most probably due to less efficient ionization and to ion suppression effects caused by the background electrolyte. Hence, further optimization is required for the sensitive CE-MS analysis of anionic compounds in body fluids. It is concluded that the selection of a CE method for profiling of cationic metabolites in urine depends on the purpose of the study. For high-throughput analyses, the PB-PVS CE-MS method is favored whereas the PB-DS-PB CE-MS method provides a more information-rich metabolic profile, but at the cost of prolonged analysis time. [source]


Cyclodextrin-based nonaqueous electrokinetic chromatography with UV and mass spectrometric detection: Application to the impurity profiling of amiodarone,

ELECTROPHORESIS, Issue 17 2008
Roelof Mol
Abstract The potential of nonaqueous electrokinetic chromatography (NAEKC) using cyclodextrins (CD) for the analysis of basic drugs and related compounds was evaluated. Both UV absorbance and mass spectrometric (MS) detection were employed. Addition of neutral CD to the NA background electrolyte did not significantly enhance the separation of a test mixture of basic drugs, and no change in selectivity was observed. In contrast, anionic single-isomer-sulfated CD strongly added to the selectivity of the NAEKC system inducing an improved resolution among the test compounds and increasing the migration time window. The applicability of the NAEKC system using anionic CD is demonstrated by the profiling of a sample of the drug amiodarone that had been stored for 1,year at room temperature. Amiodarone is poorly soluble in water. NAEKC-UV analysis indicated the presence of at least seven impurities in the amiodarone sample. In order to identify these compounds, the NAEKC system was coupled directly to electrospray ionization (ESI) ion-trap MS. The total of detected impurities increased to 12 due to the added sensitivity and selectivity of MS detection. Based on the acquired MS/MS data, three sample constituents could be identified as ,known' impurities (British Pharmacopoeia), whereas for three unknown impurities molecular structures could be proposed. Estimated limits of detection for amiodarone using the NAEKC method were 1,,g/mL with UV detection and 15,ng/mL with ESI-MS detection (full-scan). Based on relative responses, the impurity content of the stored drug substance was estimated to be 0.33 and 0.47% using NAEKC-UV and NAEKC-ESI-MS, respectively. [source]


Analysis of anthocyanins in red onion using capillary electrophoresis-time of flight-mass spectrometry

ELECTROPHORESIS, Issue 12 2008
Erik V. Petersson
Abstract For the first time, a capillary electrophoresis-time of flight-mass spectrometry analysis method for detecting anthocyanins in red onion was developed. The analysis method included the use of silica capillaries coated with poly-LA 313 (polycationic amine-containing polymer) and an MS-compatible volatile background electrolyte (BGE). The method was environmentally friendly and sensitive; and its rapidness combined with an acidic BGE helped in preventing anthocyanin degradation. By using high-resolution TOF-MS with pre-run tuning of masses, low mass errors were achieved in the determination of conjugated anthocyanins in red onion, and a simultaneous up-front fragmentation provided confirmation of the aglycon backbone for their secure identification. Most anthocyanins (at least seven out of ten) known in red onion from the literature were found, as well as one new for this matrix. [source]


Surfactant-coated single-walled carbon nanotubes as a novel pseudostationary phase in capillary EKC

ELECTROPHORESIS, Issue 11 2007
Beatriz Suárez
Abstract The analytical potential of the use of surfactant-coated single-walled carbon nanotubes (SC-SWNTs) as pseudostationary phase in CE is described. The pseudostationary phase shows an efficient alternative in enhancing electrochromatographic resolution of compounds which are capable of interacting with a nanotube surface, such as aromatic compounds. In general, the resolution is enhanced by increasing nanotube concentration in the buffer but the maximum amount of SWNTs that can be added to background electrolyte was found limited by compatibility with the UV/visible detection. As an alternative, a low-extension partial filling was used, consisting of the introduction into the capillary of concentrated SC-SWNT, just before the sample, with a plug length similar to the sample one. This has been showed as a reliable procedure in increasing resolution and sensitivity by sweeping phenomena. Finally, the potential of SC-SWNTs to perform chiral separations is discussed. [source]


Determination of ethyl sulfate , a marker for recent ethanol consumption , in human urine by CE with indirect UV detection

ELECTROPHORESIS, Issue 23 2006
Francesc A. Esteve-Turrillas
Abstract A CE method for the determination of the ethanol consumption marker ethyl sulfate,(EtS) in human urine was developed. Analysis was performed in negative polarity mode with a background electrolyte composed of 15,mM maleic acid, 1,mM phthalic acid, and 0.05,mM cetyltrimethylammonium bromide (CTAB) at pH,2.5 and indirect UV detection at 220,nm (300,nm reference wavelength). This buffer system provided selective separation conditions for EtS and vinylsulfonic acid, employed as internal standard, from urine matrix components. Sample pretreatment of urine was minimized to a 1:5 dilution with water. The optimized CE method was validated in the range of 5,700,mg/L using seven lots of urine. Intra- and inter-day precision and accuracy values, determined at 5, 60, and 700,mg/L with each lot of urine, fulfilled the requirements according to common guidelines for bioanalytical method validation. The application to forensic urine samples collected at autopsies as well as a successful cross-validation with a LC-MS/MS-based method confirmed the overall validity and real-world suitability of the developed expeditious CE assay (sample throughput 130 per day). [source]


Characterization of hydroxyaromatic compounds in vegetable oils by capillary electrophoresis with direct injection in an oil-miscible KOH/propanol/methanol medium

ELECTROPHORESIS, Issue 17 2005
Carla R. B. Mendonça
Abstract The separation of hydroxyaromatic compounds in vegetable oils, including synthetic antioxidants (3- tert -butyl-4-hydroxyanisol and 2,6-di- tert -butyl-4-hydroxytoluene), E-vitamers and other natural oil components, by nonaqueous capillary electrophoresis in an oil-miscible background electrolyte (BGE) was investigated. The BGE contained 40,mM KOH in a methanol/1-propanol (PrOH) mixture (15:85 v/v). The oil samples were 1:1 diluted with PrOH and directly injected in the capillary. Under negative polarity (cathode at the injection end), the anionic solutes moved faster than the electroosmotic flow, being well-resolved among them and from the triacylglycerols. Using virgin palm, extra virgin olive, wheat germ, virgin soybean and other oils, the capability of the procedure to quickly yield a characteristic profile of the biophenols present in the sample was demonstrated. The , -, (,,+,,)- (as unresolved pair) and , -tocopherols of a soybean oil sample were quantified. [source]


Comparison of methanol and acetonitrile as solvents for the separation of sertindole and its major metabolites by capillary zone electrophoresis

ELECTROPHORESIS, Issue 17 2005
Xavier Subirats
Abstract Sertindole (1-[2-[4-[5-chloro-1-(4-fluorophenyl)-1H -indol-3-yl]-1-piperidinyl]ethyl]-2-imidazolidinone), an atypical antipsychotic drug, was separated by capillary electrophoresis from its two main metabolites norsertindole and dehydrosertindole. The low solubility of the analytes in water (octanol-water partition coefficient is about 105) is overcome by the use of methanol (MeOH) and acetonitrile (ACN) as solvents for the background electrolyte (BGE). Mobilities were measured in BGEs with defined pH in a broad range. It was found that in MeOH the mobility of the analytes is mainly governed by acid,base equilibria, whereas in ACN other reactions like ion pairing and homoconjugation play a pronounced role and lead to a complex pattern of the mobility as function of the pH. However, separation can be obtained in less than 10,min in both solvent systems. [source]


Analytical potential of 6-oxy-(N -succinimidyl acetate)-9-(2'-methoxycarbonyl) fluorescein for the determination of amino compounds by capillary electrophoresis with laser-induced fluorescence detection

ELECTROPHORESIS, Issue 10 2005
Liwei Cao
Abstract The analytical potential of a fluorescein analogue, 6-oxy-(N -succinimidyl acetate)-9-(2'-methoxycarbonyl) fluorescein (SAMF), for the first time synthesized in our laboratory, as a labeling reagent for the labeling and determination of amino compounds by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection was investigated. Biogenic monoamines and amino acids were chosen as model analytes to evaluate the analytical possibilities of this approach. The derivatization conditions and separation parameters for the biogenic amines were optimized in detail. The derivatization was performed at 30°C for 6 min in boric acid buffer (pH 8.0). The derivatives were baseline-separated in 15 min with 25 mM boric acid running buffer (pH 9.0), containing 24 mM SDS and 12.5% v/v acetonitrile. The concentration detection limit for biogenic amines reaches 8×10,11 mol·L,1 (signal-to-noise ratio = 3). The application of CE in the analysis of the SAMF-derivatized amino acids was also exploited. The optimal running buffer for amino acids suggested that weak acidic background electrolyte offered better separation than the basic one. The proposed method was applied to the determination of biogenic amines in three different beer samples with satisfying recoveries varying from 92.8% to 104.8%. Finally, comparison of several fluorescein-based probes for amino compounds was discussed. With good labeling reaction, excellent photostability, pH-independent fluorescence (pH 4,9), and the resultant widely suited running buffer pH, SAMF has a great prospect in the determination of amino compounds in CE. [source]


Analysis of lamotrigine and its metabolites in human plasma and urine by micellar electrokinetic capillary chromatography

ELECTROPHORESIS, Issue 4-5 2005
Vincenzo Pucci
Abstract A reliable micellar electrokinetic capillary chromatographic method was developed and validated for the determination of lamotrigine and its metabolites in human plasma and urine. The variation of different parameters, such as pH of the background electrolyte (BGE) and Sodium dodecyl sulfate (SDS) concentration, were evaluated in order to find optimal conditions. Best separation of the analytes was achieved using a BGE composed of 10 mM borate and 50 mM SDS, pH 9.5; melatonin was selected as the internal standard. Isolation of lamotrigine and its metabolites from plasma and urine was accomplished with an original solid-phase extraction procedure using hydrophilic-lypophilic balance cartridges. Good absolute recovery data and satisfactory precision values were obtained. The calibration plots for lamotrigine and its metabolites were linear over the 1,20 ,g/mL concentration range. Sensitivity was satisfactory; the limits of detection and quantitation of lamotrigine were 500 ng/mL and 1 ,g/mL, respectively. The application of the method to real plasma samples from epileptic patients under therapy with lamotrigine gave good results in terms of accuracy and selectivity, and in agreement with those obtained with an high-performance liquid chromatography (HPLC) method.* [source]


Influence of methanol on the enantioresolution of antihistamines with carboxymethyl-,-cyclodextrin in capillary electrophoresis

ELECTROPHORESIS, Issue 16 2004
Ann Van Eeckhaut
Abstract According to the model of Wren and Rowe, the separation between two enantiomers in capillary electrophoresis (CE) decreases if an organic modifier is added to the run buffer containing a neutral cyclodextrin (CD) in a concentration below its optimal value in a solvent-free system. In previous work, however, it was observed that the addition of methanol to the background electrolyte (BGE) containing not charged carboxymethyl-,-CD in a concentration below its optimal value, increased the enantioresolution of dimetindene maleate. The enantioresolution decreased when other organic modifiers (ethanol, isopropanol or acetonitrile) were added and/or when other neutral (,-CD, hydroxypropyl-,-CD) or chargeable (carboxyethyl-,- and succinyl-,-CD) CDs were used. In this CE study further attempts are made to elucidate the observed phenomena through investigating other basic drugs. The effect of organic modifier and CD concentration on the enantioseparation was studied by means of central composite designs. It is shown that obtaining this increase in enantioresolution depends upon the type of CD, the type of organic modifier, and the structure of the analytes. It was also observed that small differences in the structure of the analytes or the CD could have an influence on the enantioresolution. The addition of methanol also resulted in different effects on the resolution of closely related analytes. [source]


Development of capillary zone electrophoresis-electrospray ionization-mass spectrometry for the determination of lamotrigine in human plasma

ELECTROPHORESIS, Issue 13 2004
Jack Zheng
Abstract A method of coupling capillary zone electrophoresis (CZE) with electrospray ionization-mass spectrometry (ESI-MS) detection has been developed for monitoring an antiepileptic drug, lamotrigine (LTG) in human plasma. The CZE-MS was developed in three stages: (i) CZE separation and ESI-MS detection of LTG and tyramine (TRM, internal standard) were simultaneously optimized by studying the influence of CZE background electrolyte (BGE) pH, BGE ionic strength, and nebulizer pressure of the MS sprayer; (ii) sheath liquid parameters, such as pH, ionic strength, organic modifier content, and flow rate of the sheath liquid, were systematically varied under optimum CZE-MS conditions developed in the first stage; (iii) MS sprayer chamber parameters (drying gas temperature and drying gas flow rate) were varied for the best MS detection of LTG. The developed assay was finally applied for the determination of LTG in plasma samples. The linear range of LTG in plasma sample assay was between 0.1,5.0 ,g/mL with a limit of detection as low as 0.05 ,g/mL and run time less than 6 min. Finally, the concentration-time profile of LTG in human plasma sample was found to correlate well when CZE-ESI-MS was compared to a more established method of high-performance liquid chromatography with ultraviolet detection. [source]


Determination of cationic mobilities and pKa values of 22 amino acids by capillary zone electrophoresis

ELECTROPHORESIS, Issue 2 2004
eláková, ina V
Abstract The effective mobilities of the cationic forms of common amino acids , mostly proteinogenic , were determined by capillary zone electrophoresis in acidic background electrolytes at pH between 2.0 and 3.2. The underivatized amino acids were detected by the double contactless conductivity detector. Experimentally measured effective mobilities were fitted with the suitable regression functions in dependence on pH of the background electrolyte. The parameters of the given regression function corresponded to the values of the actual mobilities and the mixed dissociation constants (combining activities and concentrations) of the compound related to the actual ionic strength. McInnes approximation and Onsager theory were used to obtain thermodynamic dissociation constants (pKa) and limiting (absolute) ionic mobilities. [source]


Nonaqueous capillary electrophoretic separation of polyphenolic compounds in wine using coated capillaries at high pH in methanol

ELECTROPHORESIS, Issue 24 2003
Zuzana Demianová
Abstract Nonaqueous capillary electrophoretic separation of a group of flavonoids (quercetin, myricetin, catechin, epicatechin) and resveratrol in wine was investigated in methanol at high pH. Malonate background electrolyte (pH* 13.5, ionic strength I = 14.2 mmol/L) provided highly repeatable separations of the analytes. Tests of untreated and coated (poly(glycidylmethacrylate- co - N -vinylpyrrolidone)) capillaries showed the analysis to be faster (6.5 min vs. 25 min) and the repeatability better in the coated capillaries. The coating procedure was simple and highly repeatable and the coating was stable during 40,45 runs. Determination of the last migrating peaks (epicatechin, resveratrol and catechin) was achieved merely by evaporating the wine samples and reconstituting the residue in methanol. For determination of the first migrating peaks (quercetin and myricetin) the samples were submitted to solid-phase extraction in C8 cartridges. [source]


Use of chiral zwitterionic surfactants for enantiomeric resolutions by capillary electrophoresis

ELECTROPHORESIS, Issue 15 2003
Mark R. Hadley
Abstract The enantiomeric resolution of 1,1'-binaphthyl-2,2'-diamine and Tröger's base was investigated using the commercially available zwitterionic surfactants 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulphonate (CHAPS) and 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulphonate (CHAPSO). Resolution of the weakly basic chiral probes was achieved using varying concentrations of surfactant, above their critical micellar concentrations, in a phosphate buffer (pH 2.5; 100 mM) to ensure ionisation of the analytes. Both CHAPS and CHAPSO were employed in the absence of additional coselectors or surfactants as sole micellar-forming agents. The addition of organic modifiers, methanol and acetonitrile (ACN), to the background electrolyte (BGE) was found to have a detrimental effect on enantioselectivity presumably by alteration of the phase polarity. [source]


Enantioseparation of warfarin and its metabolites by capillary zone electrophoresis

ELECTROPHORESIS, Issue 15 2003
Qingyu Zhou
Abstract A capillary zone electrophoresis (CZE) method with direct ultraviolet (UV)-absorbance detection is presented for the simultaneous enantiomeric separation of warfarin and its main metabolites, including warfarin alcohols, 4'-, 6-, and 7-hydroxywarfarin, using highly sulfated ,-cyclodextrin (HS-,-CD) as the chiral selector. This chiral separation method was optimized in terms of the electrophoretic parameters, which included the concentration of HS-,-CD used, the type and composition of organic modifier added to the background electrolyte (BGE) buffer, and the BGE buffer pH. Chiral separation of warfarin and its major metabolites was achieved with high resolution, selectivity, efficiency, repeatability, and reproducibility. This optimized chiral analysis of warfarin along with its metabolites was completed within a satisfactory electrophoresis time of 20 min. [source]


Quantitation of talinolol and other ,-blockers by capillary electrophoresis for in vitro drug absorption studies

ELECTROPHORESIS, Issue 15 2003
Bilal Awadallah
Abstract A capillary zone electrophoresis method is described for the enantioseparation of talinolol using heptakis(2,3-diacetyl-6-sulfo)-,-cyclodextrin (HDAS-,-CD) as a chiral selector. After liquid-liquid extraction of talinolol from physiological solution, electrokinetic injection was employed to improve the sensitivity. The use of a coated capillary was necessary to achieve stable and reproducible enantioseparations. A baseline separation of the talinolol enantiomers was achieved in less than 10 min using 100 mM phosphate solution as background electrolyte and pH 3.5, at the presence of 3.0 mM HDAS-,-CD and at 20°C. In addition, this analytical condition proved to be useful for the enantioseparation of a number of other ,-blocking agents such as alprenolol, atenolol, bisoprolol, celiprolol, metipranolol, oxprenolol, and sotalol. For determing talinolol, the method could be validated in terms of precision, accuracy and linearity, and was found to be suitable in determination of talinolol enantiomers in highly diluted samples obtained from in vitro experiments. [source]


Direct chiral resolution of tartaric acid by ion-pair capillary electrophoresis using an aqueous background electrolyte with (1R,2R)-(,)-1,2-diaminocyclohexane as a chiral counterion

ELECTROPHORESIS, Issue 15 2003
Shuji Kodama
Abstract Chiral resolution of native DL -tartaric acid was achieved by ion-pair capillary electrophoresis (CE) using an aqueous-ethanol background electrolyte with (1R,2R)-(,)-1,2-diaminocyclohexane (R -DACH) as a chiral counterion. Factors affecting chiral resolution and migration time of tartaric acid were studied. By increasing the viscosity of the background electrolyte and the ion-pair formation, using organic solvents with a lower relative dielectric constant, resulted in a longer migration time. The optimum conditions for both high resolution and short migration time of tartaric acid were found to be a mixture of 65% v/v ethanol and 35% v/v aqueous solution containing 30 mMR -DACH and 75 mM phosphoric acid (pH 5.1) with an applied voltage of ,30 kV at 25°C, using direct detection at 200 nm. By using this system, the resolution (Rs) of racemic tartaric acid was approximately 1. The electrophoretic patterns of tartaric and malic acids suggest that two carboxyl groups and two hydroxyl groups of tartaric acid are associated with the enantioseparation of tartaric acid by the proposed CE method. [source]


Dual stacking of unbuffered saline samples, transient isotachophoresis plus induced pH junction focusing

ELECTROPHORESIS, Issue 10 2003
Sang-Hee Shim
Abstract A dual stacking mechanism based on transient isotachophoresis (TITP) and induced pH junction focusing is demonstrated as a means to increase the concentration sensitivity in capillary electrophoresis of highly saline samples. When stacking was carried out with an unbuffered saline sample of fluorescein between two zones of low mobility background electrolyte at high pH under an electric field of reverse polarity, two transient peaks at both boundaries of the sample zone were observed. One peak at the rear boundary could be inferred as a transient isotachophoretic stacked zone. Through computer simulations of an unbuffered sample with a high concentration of sodium chloride, we showed that the fast moving zones of sodium and chloride ions induced pH changes at both boundaries to satisfy the electroneutrality condition and that the peak at the front boundary was due to the induced pH junction. To verify the pH changes, an indicator, thymol blue, was added to an NaCl solution and the color changes under an electric field were observed. The proposed mechanism was supported by observing the dual stacking procedure for an unbuffered sample of 4-nitrophenol and measuring additional sensitivity enhancements by dual stacking for ten weakly acidic compounds. For the ten analytes including nucleoside phosphates, every dual stacking of an unbuffered sample exhibited an additional enhancement up to 86% larger than that of usual transient isotachophoresis of the corresponding buffered sample without loss of separation efficiency and reproducibility. Therefore, it would be useful to skip over buffering in sample preparation for TITP, contrary to the general recommendation. [source]


Determination of enantiomeric purity of a novel COX-2 anti-inflammatory drug by capillary electrophoresis using single and dual cyclodextrin systems

ELECTROPHORESIS, Issue 9 2003
Carlos Pérez-Maseda
Abstract E-6087 is the most advanced compound among the cyclooxygenase-2 (COX-2) inhibitor drugs developed in our company. Its activity is mainly associated with the S(,)-enantiomer (E-6232), whereas the R(,)-enantiomer (E-6231) becomes an impurity whose content should be determined. Five main impurities and degradation products of E-6232 have been found (E-6144, E-6024, E-6072, E-6397 and E-6132), and some of them co-elute with the distomer when using a chiral high-performance liquid chromatography (HPLC) method. Consequently, we have optimized the separation of all the impurities from the two enantiomers of E-6087 by capillary electrophoresis (CE), in order to use the method for the enantiomeric purity determination of E-6232. The effect of the methanol (MeOH) content in the background electrolyte (BGE), the sulfobutyl ether-,-cyclodextrin (SBE-,-CD) and heptakis-(2,6-di- O -methyl)-,-cyclodextrin (DM-,-CD) concentration, and the capillary temperature have been studied. Separation of all compounds could be achieved in different systems, either in a single CD-system (with SBE-,-CD) or in a dual CD-system (with DM-,-CD as a neutral CD). By using the dual CD system a limit of detection (LOD) and a limit of quantitation (LOQ) of 0.03% and 0.1% of distomer, respectively, were achieved*. [source]


Simultaneous separation of fifteen approved protease and reverse transcriptase inhibitors for human immunodeficiency virus therapy by capillary electrophoresis

ELECTROPHORESIS, Issue 4 2003
Nguyen Duc Tuan
Abstract In the present investigation, a novel approach towards a complete separation of all 15 protease and reverse transcriptase inhibitors which are currently approved for use in highly active antiretroviral therapy in a single analytical run is presented. The developed method employs an acidic background electrolyte with sodium polyanethol sulfonate (SPAS) as polyanionic electroosmotic flow (EOF) modifier to establish a strong cathodic EOF, sodium dodecyl sulfate (SDS) as pseudostationary selector, and acetonitrile and ethanol as organic modifiers. Separation of the analytes is based on two different mechanisms. The more basic analytes are protonated at the prevailing pH conditions and thus migrate in front of the cathodic EOF, whereas the less basic and neutral analytes interact with the SDS and are retained after the EOF. By optimizing electrolyte pH, the amount of solvents and SDS concentrations in the background electrolyte it is possible to completely separate all compounds of interest. [source]


Separation of twenty underivatized essential amino acids by capillary zone electrophoresis with contactless conductivity detection

ELECTROPHORESIS, Issue 4 2003
Pavel Coufal
Abstract Twenty underivatized essential amino acids were separated using capillary zone electrophoresis and consequently detected with contactless conductivity detection (CCD). A simple acidic background electrolyte (BGE) containing 2.3 M acetic acid and 0.1% w/w hydroxyethylcellulose (HEC) allowed the electrophoretic separation and sensitive detection of all 20 essential amino acids in their underivatized cationic form. The addition of HEC to the BGE suppressed both, electroosmotic flow and analyte adsorption on the capillary surface resulting in an excellent migration time reproducibility and a very good analyte peak symmetry. Additionally, the HEC addition significantly reduced the noise and long-term fluctuations of the CCD baseline. The optimized electrophoretic separation method together with the CCD was proved to be a powerful technique for determination of amino acid profiles in various natural samples, like beer, yeast, urine, saliva, and herb extracts. [source]


Hydrophobicity-aided potentiometric detection of catecholamines, beta-agonists, and beta-blockers in a mixed-solvent capillary electrophoresis system

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 1 2009
Grzegorz Bazylak
Abstract A series of cationic drug-like substances with distinct basicity, hydrogen-bonding ability, and hydrophobicity, including three catecholamines, two beta-agonists, and thirteen beta-blockers, was successfully detected in a capillary electrophoresis system using an end-capillary coupled potentiometric sensor consisting of a PVC-based liquid membrane deposited directly on a 100 ,m diameter copper rod. The electrophoretic separation was performed on a 72 cm×75 ,m id uncoated fused-silica capillary with an acidic background electrolyte containing phosphoric acid in a water,acetonitrile mixture, pH* 2.8. Samples were injected electrokinetically at 5.0 kV for 10 s and a running voltage of 19.5 kV was applied. Excluding the bufuralol/practolol pair, baseline separation of all substances was achieved in the developed CE system within 9 minutes. A linear relationship (R2 0.8752) between the sensitivity of the applied potentiometric detector and the parameter log P characterising the hydrophobicity of the analytes was demonstrated. The best observable limits of detection (LODs) were obtained for the highly hydrophobic substances, i. e. bufuralol (8.10×10,8 M injected concentration, S/N = 3), propranolol, alprenolol, and clenbuterol (ca. 1.10×10,7 M). In the case of hydrophilic catecholamines and carbuterol their LODs with potentiometric detection were lowered by a factor of almost one thousand, reaching a value of 6.6×10,5 M. [source]


Capillary electrophoretic chiral separation of Cinchona alkaloids using a cyclodextrin selector

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 6-7 2008
Dimitrios Tsimachidis
Abstract A new capillary electrophoretic method for the chiral separation of four major Cinchona alkaloids (quinine/quinidine and cinchonine/cinchonidine) was developed using heptakis-(2,6-di- O -methyl)-,-cyclodextrin as the chiral selector. The inner walls of the separation capillary were modified with a thin polyacrylamide layer, which substantially reduced the electroosmotic flow and improved the chiral resolution and the reproducibility of the migration time of the analytes. Various operation parameters were optimised, including the pH, the capillary temperature, the concentration of the background electrolyte, and the concentration of the chiral selector. Baseline separation of the two diastereomer pairs was achieved in 12 minutes in ammonium acetate background electrolyte pH 5.0 with addition of cyclodextrin in a concentration of 3 mM or higher. [source]


Preliminary study on the monitoring of glutathione S-tranferase activity toward styrene oxide by electromigration methods

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 12 2005
ková
Abstract A new method has been developed for the monitoring of glutathione S-tranferase (GST) detoxification activity toward styrene oxide (SO). The enzymatic reaction was carried out directly in a thermostatted autosampler vial and the formation of conjugates between glutathione (GSH) and SO was monitored by sequential MEKC runs. The determinations were performed in a 50-,m fused silica capillary using 50 mM SDS in 20 mM phosphate 20 mM tetraborate buffer (pH 8.3) as a background electrolyte; separation voltage 28 kV (positive polarity), temperature of capillary 25°C, and detection at 200 nm. The method is rapid, amenable to automation, and requires only small amounts of samples, which is especially important in the case of GST isoenzyme analyses. [source]


Separation of diastereomers of flavanone-7- O -glycosides by capillary electrophoresis using sulfobutyl ether-,-cyclodextrin as the selector

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 9-10 2003
Zeineb Aturki
Abstract A method was developed for the separation of diastereomers of flavanone-7- O -glycosides by capillary electrophoresis using sulfobutyl ether-,-cyclodextrin (SBE-,-CD) in the background electrolyte. The effect of the concentration of the CD additive, buffer pH, and organic modifier on the migration times and resolution for five flavanone glycosides (naringin, hesperidin, neohesperidin, narirutin, and eriocitrin) was studied. Baseline separations of these compounds as pairs of diastereoisomers were achieved with 20 mM tetraborate buffer at pH 7 containing 5 mg/mL of SBE-,-CD and 10% (v/v) of methanol. The developed method was used for the qualitative analysis of the diastereomeric composition of the major flavanone glycosides in different citrus juices. The ability of SBE-,-CD to discriminate flavanone enantiomers was also investigated. [source]


Drug impurity profiling by capillary electrophoresis/mass spectrometry using various ionization techniques

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 18 2009
Paul Hommerson
Capillary electrophoresis/mass spectrometry (CE/MS) is predominantly carried out using electrospray ionization (ESI). Recently, atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) have become available for CE/MS. With the VUV lamp turned off, the APPI source may also be used for CE/MS by thermospray ionization (TSI). In the present study the suitability of ESI, APCI, APPI and TSI for drug impurity profiling by CE/MS in the positive ion mode is evaluated. The drugs carbachol, lidocaine and proguanil and their potential impurities were used as test compounds, representing different molecular polarities. A background electrolyte of 100,mM acetic acid (pH 4.5) provided baseline separation of nearly all impurities from the respective drugs. APPI yielded both even- and odd-electron ions, whereas the other ionization techniques produced even-electron ions only. In-source fragmentation was more pronounced with APCI and APPI than with ESI and TSI, which was most obvious for proguanil and its impurities. In general, ESI and TSI appeared the most efficient ionization techniques for impurities that are charged in solution achieving detection limits of 100,ng/mL (full-scan mode). APPI and APCI showed a lower efficiency, but allowed ionization of low and high polarity analytes, although quaternary ammonium compounds (e.g. carbachol) could not be detected. Largely neutral compounds, such as the lidocaine impurity 2,6-dimethylaniline, could not be detected by TSI, and yielded similar detection limits (500,ng/mL) for ESI, APPI and APCI. In many cases, impurity detection at the 0.1% (w/w) level was possible when 1,mg/mL of parent drug was injected with at least one of the CE/MS systems. Overall, the tested CE/MS systems provide complementary information as illustrated by the detection and identification of an unknown impurity in carbachol. Copyright © 2009 John Wiley & Sons, Ltd. [source]


On-line preconcentration and quantitative analysis of peptide hormone of brain and intestine using on-column transient isotachophoresis coupled with capillary electrophoresis/electrospray ionization mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 23 2008
Shifei Xia
A new approach was described to achieve very sensitive analysis of peptide hormone of brain and intestine by capillary electrophoresis coupled with a transient isotachophoresis (tITP) preconcentration method. The system used was electrospray ionization mass spectrometry (ESI-MS) as detector and equipped with a sheath flow configuration. The effects of sample matrix, pH and concentration of leading electrolyte (LE), sample injection time, and ESI-MS instrumental parameters on the efficiency of the sample stacking were investigated in detail. Under the optimized conditions, lower than micromole (0.01,µM) concentrations of the peptides were easily detected. Compared to traditional hydrodynamic injection methods, about 40,230-fold increase in detection sensitivity was obtained by this technique. A distinguishing feature of the described approach is that the background electrolyte can serve as terminating electrolyte (TE), which simplifies the process of the experiments. The method was further evaluated by the analysis of low concentration active peptide mixtures spiked in hypothalamus tissue of the rat. Copyright © 2008 John Wiley & Sons, Ltd. [source]