Stimulation Leads (stimulation + lead)

Distribution by Scientific Domains


Selected Abstracts


Effects of levodopa and subthalamic nucleus stimulation on cognitive and affective functioning in Parkinson's disease

MOVEMENT DISORDERS, Issue 10 2006
Aurélie Funkiewiez MA
Abstract In Parkinson's disease (PD), levodopa and subthalamic nucleus (STN) stimulation lead to major improvement in motor symptoms. Effects of both treatments on cognition and affective status are less well understood. Motor, cognitive, and affective symptoms may relate to the dysfunctioning of parallel cortico,striatal loops. The aim of this study was to assess cognition, behavior, and mood, with and without both treatments in the same group of PD patients. A group of 22 nondemented PD patients was included in this study. Patients were tested twice before surgery (off and on levodopa) and twice 3 months after surgery (OFF and ON STN stimulation, off levodopa). Cognitive and affective effects of STN stimulation and levodopa had some common, but also different, effects. STN stimulation improved performance on the planning test, associated with the dorsolateral prefrontal cortex. However, the treatments had opposite effects on tests associated with the orbitofrontal cortex; specifically, levodopa impaired while STN stimulation improved performance on the extinction phase of a reversal/extinction task. Acutely, both treatments improved motivation and decreased fatigue and anxiety. On chronic treatment (3 months after surgery), depression improved, whereas apathy worsened 3 months after surgery. To conclude, there were significant but contrasting effects of levodopa and STN stimulation on cognition and affective functions. © 2006 Movement Disorder Society [source]


Neurotrophic activities of trk receptors conserved over 600 million years of evolution

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2004
Gad Beck
Abstract The trk family of receptor tyrosine kinases is crucial for neuronal survival in the vertebrate nervous system, however both C. elegans and Drosophila lack genes encoding trks or their ligands. The only invertebrate representative of this gene family identified to date is Ltrk from the mollusk Lymnaea. Did trophic functions of trk receptors originate early in evolution, or were they an innovation of the vertebrates? Here we show that the Ltrk gene conserves a similar exon/intron order as mammalian trk genes in the region encoding defined extracellular motifs, including one exon encoding a putative variant immunoglobulin-like domain. Chimeric receptors containing the intracellular and transmembrane domains of Ltrk undergo ligand-induced autophosphorylation followed by MAP kinase activation in transfected cells. The chimeras are internalized similarly to TrkA in PC12 cells, and their stimulation leads to differentiation and neurite extension. Knock-down of endogenous Ltrk expression compromises outgrowth and survival of Lymnaea neurons cultured in CNS-conditioned medium. Thus, Ltrk is required for neuronal survival, suggesting that trophic activities of the trk receptor family originated before the divergence of molluscan and vertebrate lineages approximately 600 million years ago. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 12,20, 2004 [source]


Modulation of 2B4 (CD244) activity and regulated SAP expression in human NK cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2007
Johanna Endt
Abstract The adapter protein SAP is important for the signal transduction of the family of SLAM-related receptors (SRR), which have important immune-modulating functions. The importance of SAP and SRR for a functional immune reaction becomes obvious in patients suffering from X-linked lymphoproliferative disease, which is characterized by non-functional SAP. Here we investigate the regulation of SAP expression in human NK cells. We demonstrate that SAP mRNA expression and protein levels are low in freshly isolated resting NK cells. IL-2 stimulation leads to an up-regulation of SAP expression, which can be enhanced by IL-12, the stimulation of TLR3 by polyinosinic-polycytidylic acid (poly(I:C))and to a lesser extent by IFN-,. EAT-2, a SAP-related adapter protein, is already detectable in resting NK cells and does not change its expression after IL-2 stimulation. The regulation of SAP has functional consequences for the stimulation of NK cell cytotoxicity by 2B4. In resting NK cells, 2B4 stimulation can only enhance NK cell lysis when co-triggered with other activating NK cell receptors. In IL-2-activated NK cells with high SAP expression the triggering of 2B4 alone is sufficient to induce NK cell cytotoxicity, demonstrating a correlation between the regulated SAP expression and the function of 2B4. [source]


Caldesmon is a cytoskeletal target for PKC in endothelium

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2006
Natalia V. Bogatcheva
Abstract We have previously shown that treatment of bovine endothelial cell (EC) monolayers with phorbol myristate acetate (PMA) leads to the thinning of cortical actin ring and rearrangement of the cytoskeleton into a grid-like structure, concomitant with the loss of endothelial barrier function. In the current work, we focused on caldesmon, a cytoskeletal protein, regulating actomyosin interaction. We hypothesized that protein kinase C (PKC) activation by PMA leads to the changes in caldesmon properties such as phosphorylation and cellular localization. We demonstrate here that PMA induces both myosin and caldesmon redistribution from cortical ring into the grid-like network. However, the initial step of PMA-induced actin and myosin redistribution is not followed by caldesmon redistribution. Co-immunoprecipitation experiments revealed that short-term PMA (5 min) treatment leads to the weakening of caldesmon ability to bind actin and, to the lesser extent, myosin. Prolonged incubation (15,60 min) with PMA, however, strengthens caldesmon complexes with actin and myosin, which correlates with the grid-like actin network formation. PMA stimulation leads to an immediate increase in caldesmon Ser/Thr phosphorylation. This process occurs at sites distinct from the sites specific for ERK1/2 phosphorylation and correlates with caldesmon dissociation from the actomyosin complex. Inhibition of ERK-kinase MEK fails to abolish grid-like structure formation, although reducing PMA-induced weakening of the cortical actin ring, whereas inhibition of PKC reverses PMA-induced cytoskeletal rearrangement. Our results suggest that PKC-dependent phosphorylation of caldesmon is involved in PMA-mediated complex cytoskeletal changes leading to the EC barrier compromise. J. Cell. Biochem. 99: 1593,1605, 2006. © 2006 Wiley-Liss, Inc. [source]


Technical Performance of Percutaneous and Laminectomy Leads Analyzed by Modeling

NEUROMODULATION, Issue 4 2004
Ljubomir Manola Dipl.
Abstract The objective of this study was to compare the technical performance of laminectomy and percutaneous spinal cord stimulation leads with similar contact spacing by computer modeling. Monopolar and tripolar (guarded cathode) stimulation with both lead types in a low-thoracic spine model was simulated using UT-SCS software. Dorsal column and dorsal root fiber thresholds were calculated as well as the area of recruited fibers in the dorsal columns, the rostrocaudal span of recruited dorsal root fibers and the energy consumption at discomfort threshold. Tripolar stimulation is superior to monopolar stimulation in the recruitment of the dorsal columns, a percutaneous lead recruits a ,12% larger dorsal column area than a laminectomy lead does. This difference is reduced when the contact spacing of the lead models is the same. A percutaneous lead with significant wire impedance (140 Ohms) consumes ,115,240% more energy, whereas the same lead with negligible wire impedance consumes ,40,85% more energy. A deterioration of all performance parameters is predicted when a percutaneous lead is placed more dorsally in the epidural tissue. When positioned next to the dura mater, a percutaneous lead has a similar performance (fiber recruitment in the dorsal columns and the dorsal roots) as a laminectomy lead with similar contact spacing, but substantially higher energy consumption. The superior clinical performance of the laminectomy lead is most probably due to the difference in volume and insertion technique of the two lead types. [source]


Effect of P2X7 receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands

THE JOURNAL OF PHYSIOLOGY, Issue 18 2010
Ivana Novak
The purinergic P2X7 receptors are expressed in different cell types where they have varied functions, including regulation of cell survival. The P2X7 receptors are also expressed in exocrine glands, but their integrated role in secretion is unclear. The aim of our study was to determine whether the P2X7 receptors affect fluid secretion in pancreas, salivary glands and tear glands. We monitored gland secretions in in vivo preparations of wild-type and P2X7,/, (Pfizer) mice stimulated with pilocarpine. In cell preparations from pancreas, parotid and lacrimal glands we measured ATP release and intracellular Ca2+ activity using Fura-2. The data showed that pancreatic secretion and salivary secretions were reduced in P2X7,/, mice, and in contrast, tear secretion was increased in P2X7,/, mice. The secretory phenotype was also dependent on the sex of the animal, such that males were more dependent on the P2X7 receptor expression. ATP release in all cell preparations could be elicited by carbachol and other agonists, and this was independent of the P2X7 receptor expression. ATP and carbachol increased intracellular Ca2+ activity, but responses depended on the gland type, presence of the P2X7 receptor and the sex of the animal. Together, these results demonstrate that cholinergic stimulation leads to release of ATP that can via P2X7 receptors up-regulate pancreatic and salivary secretion but down-regulate tear secretion. Our data also indicate that there is an interaction between purinergic and cholinergic receptor signalling and that function of the P2X7 receptor is suppressed in females. We conclude that the P2X7 receptors are important in short-term physiological regulation of exocrine gland secretion. [source]


Heterologous desensitization of the sphingosine-1-phosphate receptors by purinoceptor activation in renal mesangial cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2004
Cuiyan Xin
Sphingosine-1-phosphate (S1P) is considered a potent mitogen for mesangial cells and activates the classical mitogen-activated protein kinase (MAPK) cascade via S1P receptors. In this study, we show that S1P signalling is rapidly desensitized upon S1P receptor activation. A complete loss of S1P sensitivity occurs after 10 min of S1P pretreatment and remains for at least 8 h. A similar desensitization is also seen with the S1P mimetic FTY720-phosphate, but not with the nonphosphorylated FTY720, nor with sphingosine or ceramide. Prestimulating the cells with extracellular ATP or UTP, which bind to and activate P2Y receptors on mesangial cells, a similar rapid desensitization of the S1P receptor occurs, suggesting a heterologous desensitization of S1P receptors by P2Y receptor activation. Furthermore, adenosine binding to P1 receptors triggers a similar desensitization. In contrast, two other growth factors, PDGF-BB and TGF,2, have no significant effect on S1P-induced MAPK activation. S1P also triggers increased inositol trisphosphate (IP3) formation, which is completely abolished by S1P pretreatment but only partially by ATP pretreatment, suggesting that IP3 formation and MAPK activation stimulated by S1P involve different receptor subtypes. Increasing intracellular cAMP levels by forskolin pretreatment has a similar effect on desensitization as adenosine. Moreover, a selective A3 adenosine receptor agonist, which couples to phospholipase C and increases IP3 formation, exerted a similar effect. Pretreatment of cells with various protein kinase C (PKC) inhibitors prior to ATP prestimulation and subsequent S1P stimulation leads to a differential reversal of the ATP effect. Whereas the broad-spectrum protein kinase inhibitor staurosporine potently reverses the effect, the PKC- , inhibitor CGP41251, the PKC- , inhibitor rottlerin and calphostin C show only a partial reversal at maximal concentrations. Suramin, which is reported as a selective S1P3 receptor antagonist compared to the other S1P receptor subtypes, has no effect on the S1P-induced MAPK activation, thus excluding the involvement of S1P3 in this response. In summary, these data document a rapid homologous and also heterologous desensitization of S1P signalling in mesangial cells, which is mechanistically triggered by PKC activation and eventually another staurosporine-sensitive protein kinase, as well as by increased cAMP formation. British Journal of Pharmacology (2004) 143, 581,589. doi:10.1038/sj.bjp.0705980 [source]


Evidence for cocaine and methylecgonidine stimulation of M2 muscarinic receptors in cultured human embryonic lung cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2001
Yinke Yang
Muscarinic cholinoceptor stimulation leads to an increase in guanylyl cyclase activity and to a decrease in adenylyl cyclase activity. This study examined the effects of cocaine and methylecgonidine (MEG) on muscarinic receptors by measurement of cyclic GMP and cyclic AMP content in cultured human embryonic lung (HEL299) cells which specifically express M2 muscarinic receptors. A concentration-dependent increase in cyclic GMP production was observed in HEL299 cells incubated with carbachol, cocaine, or MEG for 24 h. The increase in cyclic GMP content was 3.6 fold for 1 ,M carbachol (P<0.01), 3.1 fold for 1 ,M cocaine (P<0.01), and 7.8 fold for 1 ,M MEG (P<0.001), respectively. This increase in cyclic GMP content was significantly attenuated or abolished by the muscarinic receptor antagonist atropine or the M2 blocker methoctramine. In contrast, cocaine, MEG, and carbachol produced a significant inhibition of cyclic AMP production in HEL299 cells. Compared to the control, HEL299 cells treated with 1 ,M cocaine decreased cyclic AMP production by 30%. MEG and carbachol at 1 ,M decreased cyclic AMP production by 37 and 38%, respectively. Atropine or methoctramine at 1 or 10 ,M significantly attenuated or abolished the cocaine-induced decrease in cyclic AMP production. However, the antagonists alone had neither an effect on cyclic GMP nor cyclic AMP production. Pretreatment of HEL299 cells with pertussis toxin prevented the cocaine-induced reduction of cyclic AMP production. Western blot analysis showed that HEL299 cells specifically express M2 muscarinic receptors without detectable M1 and M3. Incubation of HEL299 cells with cocaine, carbachol, and atropine did not alter the expression of M2 protein levels. However, the inducible isoform of nitric oxide synthase (iNOS) was induced in the presence of cocaine or carbachol and this induction was significantly attenuated after addition of atropine or methoctramine. The present data show that cocaine and MEG significantly affect cyclic GMP and cyclic AMP production in cultured HEL299 cells. Our results also show that these effects result from the drug-induced stimulation of M2 muscarinic receptors accompanied with no alterations of receptor expression. However, the induction of iNOS by cocaine may result in the increase in cyclic GMP production. British Journal of Pharmacology (2001) 132, 451,460; doi:10.1038/sj.bjp.0703819 [source]


Selective induction of nerve growth factor and brain-derived neurotrophic factor by LPS and allergen in dendritic cells

CLINICAL & EXPERIMENTAL ALLERGY, Issue 3 2008
O. Noga
Summary Background Neurotrophins are produced by various cells upon different stimuli and participate in the initiation and regulation of inflammation in various diseases including allergy and asthma, but little is known about the production and control of neurotrophins by dendritic cells (DCs). The aim of this study was to assess whether DCs produce the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), and whether inflammatory stimuli or allergens are able to induce the production of neurotrophic factors. Methods Monocyte-derived dendritic cells (MoDCs) were generated from different donors. The neurotrophins NGF and BDNF were demonstrated by RT-PCR, Western blotting, flow cytometry analysis and fluorescence microscopy. MoDCs were cultured and stimulated with lipopolysaccharide (LPS) or allergen for 24 h. The supernatants and cells were collected. Measurement for NGF and BDNF was performed by ELISA. Results DCs express mRNA for the neurotrophins NGF and BDNF. Proteins were detectable by Western blot, FACS analysis and fluorescence microscopy. LPS led to an up-regulation of BDNF, while NGF was unaffected. Cell lysates demonstrated an increased amount of BDNF after stimulation with LPS or allergen, while NGF was not affected significantly. Conclusions DCs are a source of neurotrophins. LPS selectively regulates the production of BDNF. Allergen stimulation leads to an LPS-independent regulation. This contributes to a complex involvement of neurotrophins in allergic diseases. [source]


Isolated plant nuclei as mechanical and thermal sensors involved in calcium signalling

THE PLANT JOURNAL, Issue 1 2004
Tou Cheu Xiong
Summary Calcium signals in the nucleus elicit downstream effects that are distinct from those of cytosolic calcium signals. In the present work, we have evaluated the ability of plant nuclei to sense stimuli directly and to convert them into calcium changes. We show that individual mechanical stimulation of isolated nuclei elicits a single calcium transient at acidic pHs, whereas a series of stimulations leads to oscillations whose frequency reflects that of the stimuli. Conversely, at alkaline pHs, nuclei respond to temperature but not to stretch. The stretch- and the temperature-activated processes differ by their sensitivity to pharmacological drugs known to affect ion channel activities in animal cells. Our data demonstrate that isolated nuclei are able to gauge physical parameters of their environment. This might have a profound influence on the functioning of calcium-dependent processes known to control a large array of molecular events in the nucleus. [source]