Home About us Contact | |||
Stem Cell Model (stem + cell_model)
Selected AbstractsThe Hydra polyp: Nothing but an active stem cell communityDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 1 2010Thomas C. G. Bosch Hydra is a powerful stem cell model because its potential immortality and extensive regeneration capacity is due to the presence of three distinct stem cell lineages. All three lineages conform to a well-defined spatial distribution across the whole body column of the polyp. Stem cell function in Hydra is controlled by extracellular cues and intrinsic genetic programs. This review focuses on the elusive stem cell niche of the epithelial layers. Based on a comparison of the differences between, and commonalities among, stem cells and stem cell niches in Hydra and other invertebrates and vertebrates, we propose that the whole body column of the polyp may be considered a stem cell "niche" in which stem cell populations are established and signals ensuring the proper balance between stem cells and progenitor cells are integrated. We show that, at over 500 million years old, Hydra offers an early glimpse of the regulatory potential of stem cell niches. [source] Regulation of miRNA expression during neural cell specificationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2005Lena Smirnova Abstract MicroRNA (miRNA) are a newly recognized class of small, noncoding RNA molecules that participate in the developmental control of gene expression. We have studied the regulation of a set of highly expressed neural miRNA during mouse brain development. Temporal control is a characteristic of miRNA regulation in C. elegans and Drosophila, and is also prominent in the embryonic brain. We observed significant differences in the onset and magnitude of induction for individual miRNAs. Comparing expression in cultures of embryonic neurons and astrocytes we found marked lineage specificity for each of the miRNA in our study. Two of the most highly expressed miRNA in adult brain were preferentially expressed in neurons (mir-124, mir-128). In contrast, mir-23, a miRNA previously implicated in neural specification, was restricted to astrocytes. mir-26 and mir-29 were more strongly expressed in astrocytes than neurons, others were more evenly distributed (mir-9, mir-125). Lineage specificity was further explored using reporter constructs for two miRNA of particular interest (mir-125 and mir-128). miRNA-mediated suppression of both reporters was observed after transfection of the reporters into neurons but not astrocytes. miRNA were strongly induced during neural differentiation of embryonic stem cells, suggesting the validity of the stem cell model for studying miRNA regulation in neural development. [source] A mouse embryonic stem cell model of Schwann cell differentiation for studies of the role of neurofibromatosis type 1 in Schwann cell development and tumor formationGLIA, Issue 11 2007Therese M. Roth Abstract The neurofibromatosis Type 1 (NF1) gene functions as a tumor suppressor gene. One known function of neurofibromin, the NF1 protein product, is to accelerate the slow intrinsic GTPase activity of Ras to increase the production of inactive rasGDP, with wide-ranging effects on p21ras pathways. Loss of neurofibromin in the autosomal dominant disorder NF1 is associated with tumors of the peripheral nervous system, particularly neurofibromas, benign lesions in which the major affected cell type is the Schwann cell (SC). NF1 is the most common cancer predisposition syndrome affecting the nervous system. We have developed an in vitro system for differentiating mouse embryonic stem cells (mESC) that are NF1 wild type (+/+), heterozygous (+/,), or null (,/,) into SC-like cells to study the role of NF1 in SC development and tumor formation. These mES-generated SC-like cells, regardless of their NF1 status, express SC markers correlated with their stage of maturation, including myelin proteins. They also support and preferentially direct neurite outgrowth from primary neurons. NF1 null and heterozygous SC-like cells proliferate at an accelerated rate compared to NF1 wild type; this growth advantage can be reverted to wild type levels using an inhibitor of MAP kinase kinase (Mek). The mESC of all NF1 types can also be differentiated into neuron-like cells. This novel model system provides an ideal paradigm for studies of the role of NF1 in cell growth and differentiation of the different cell types affected by NF1 in cells with differing levels of neurofibromin that are neither transformed nor malignant. © 2007 Wiley-Liss, Inc. [source] Cancer stem cell hypothesis in thyroid cancerPATHOLOGY INTERNATIONAL, Issue 9 2006Ping Zhang There is increasing evidence that many types of cancer contain their own stem cells: cancer stem cells, which are characterized by their self-renewing capacity and differentiation ability. Cancer could be regarded as an abnormal organ initiated by cancer stem cells, and cancer stem cells might play a decisive role in tumor initiation and progression. Dysregulation of stem cell self-renewal is a likely requirement for the development of cancer, and stem cells seem more likely to be the transformed target cells in carcinogenesis. This cancer stem cell model has great implications for understanding of oncogenesis and treatment for cancer. Abundant evidence suggests that, parallel to other solid tumors, cancer stem cells also exist in thyroid cancer, although their characteristics are largely unknown to date. The present review will discuss the potential traits of cancer stem cells in thyroid cancer and their transformation targets: stem cells in the thyroid gland. [source] |