Stem Cell Cultures (stem + cell_culture)

Distribution by Scientific Domains


Selected Abstracts


PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008
Harshini Sarojini
Abstract Conditioned medium (secretome) derived from an enriched stem cell culture stimulates chemotaxis of human fibroblasts. These cells are classified as multipotent murine mesenchymal stromal cells (mMSC) by immunochemical analysis of marker proteins. Proteomic analysis of mMSC secretome identifies nineteen secreted proteins, including extracellular matrix structural proteins, collagen processing enzymes, pigment epithelium-derived factor (PEDF) and cystatin C. Immunodepletion and reconstitution experiments show that PEDF is the predominant fibroblast chemoattractant in the conditioned medium, and immunofluorescence microscopy shows strong staining for PEDF in the cytoplasm, at the cell surface, and in intercellular space between mMSCs. This stimulatory effect of PEDF on fibroblast chemotaxis is in contrast to the PEDF-mediated inhibition of endothelial cell migration, reported previously. These differential functional effects of PEDF toward fibroblasts and endothelial cells may serve to program an ordered temporal sequence of scaffold building followed by angiogenesis during wound healing. J. Cell. Biochem. 104: 1793,1802, 2008. © 2008 Wiley-Liss, Inc. [source]


Long chain-polyunsaturated fatty acids modulate membrane phospholipid composition and protein localization in lipid rafts of neural stem cell cultures

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2010
Bénédicte Langelier
Abstract Rat neural stem cells/neural progenitors (NSC/NP) are generally grown in serum-free medium. In this study, NSC/NP were supplemented with the main long-chain polyunsaturated fatty acids (PUFAs) present in the brain, arachidonic acid (AA), or docosahexaenoic acid (DHA), and were monitored for their growth. Lipid and fatty acid contents of the cells were also determined. Under standard conditions, the cells were characterized by phospholipids displaying a highly saturated profile, and very low levels of PUFAs. When cultured in the presence of PUFAs, the cells easily incorporated them into the phospholipid fraction. We also compared the presence of three membrane proteins in the lipid raft fractions: GFR and connexin 43 contents in the rafts were increased by DHA supplementation, whereas G, subunit content was not significantly modified. The restoration of DHA levels in the phospholipids could profoundly affect protein localization and, consequently, their functionalities. J. Cell. Biochem. 110: 1356,1364, 2010. © 2010 Wiley-Liss, Inc. [source]


Amphiregulin is a mitogen for adult neural stem cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2002
Anna Falk
Abstract Neurons are continuously generated from stem cells in the hippocampus and along the lateral ventricles in the adult brain. Neural stem cells can be propagated in vitro in the presence of epidermal growth factor (EGF) or fibroblast growth factor-2. We report here that amphiregulin, a growth factor related to EGF, is a mitogen for adult mouse neural stem cells in vitro and displays potency similar to that of EGF. Neural stem cell cultures can be initiated and the cells propagated as efficiently in the presence of amphiregulin only as with EGF. Furthermore, we show that amphiregulin is expressed in the choroid plexus of the ventricular system and in the hippocampus in the adult brain, suggesting that amphiregulin may participate in the regulation of neural stem cell proliferation and neurogenesis in the adult brain. © 2002 Wiley-Liss, Inc. [source]


Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2002
Weihong Ge
Abstract In the developing central nervous system (CNS), Notch signaling preserves progenitor pools and inhibits neurogenesis and oligodendroglial differentiation. It has recently been postulated that Notch instructively drives astrocyte differentiation. Whether the role of Notch signaling in promoting astroglial differentiation is permissive or instructive has been debated. We report here that the astrogliogenic role of Notch is in part mediated by direct binding of the Notch intracellular domain to the CSL DNA binding protein, forming a transcriptional activation complex onto the astrocyte marker gene, glial fibrillary acidic protein (GFAP). In addition, we found that, in CSL,/, neural stem cell cultures, astrocyte differentiation was delayed but continued at a normal rate once initiated, suggesting that CSL is involved in regulating the onset of astrogliogenesis. Importantly, although the classical CSL-dependent Notch signaling pathway is intact and able to activate the Notch canonical target promoter during the neurogenic phase, it is unable to activate the GFAP promoter during neurogenesis. Therefore, the effect of Notch signaling on target genes is influenced by cellular context in regulation of neurogenesis and gliogenesis. © 2002 Wiley-Liss, Inc. [source]


Extent of cell differentiation and capacity for cartilage synthesis in human adult adipose-derived stem cells: Comparison with fetal chondrocytes

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2010
Nastaran Mahmoudifar
Abstract This study evaluated the extent of differentiation and cartilage biosynthetic capacity of human adult adipose-derived stem cells relative to human fetal chondrocytes. Both types of cell were seeded into nonwoven-mesh polyglycolic acid (PGA) scaffolds and cultured under dynamic conditions with and without addition of TGF-,1 and insulin. Gene expression for aggrecan and collagen type II was upregulated in the stem cells in the presence of growth factors, and key components of articular cartilage such as glycosaminoglycan (GAG) and collagen type II were synthesized in cultured tissue constructs. However, on a per cell basis and in the presence of growth factors, accumulation of GAG and collagen type II were, respectively, 3.4- and 6.1-fold lower in the stem cell cultures than in the chondrocyte cultures. Although the stem cells synthesized significantly higher levels of total collagen than the chondrocytes, only about 2.4% of this collagen was collagen type II. Relative to cultures without added growth factors, treatment of the stem cells with TGF-,1 and insulin resulted in a 59% increase in GAG synthesis, but there was no significant change in collagen production even though collagen type II gene expression was upregulated 530-fold. In contrast, in the chondrocyte cultures, synthesis of collagen type II and levels of collagen type II as a percentage of total collagen more than doubled after growth factors were applied. Although considerable progress has been achieved to develop differentiation strategies and scaffold-based culture techniques for adult mesenchymal stem cells, the extent of differentiation of human adipose-derived stem cells in this study and their capacity for cartilage synthesis fell considerably short of those of fetal chondrocytes. Biotechnol. Bioeng. 2010;107: 393,401. © 2010 Wiley Periodicals, Inc. [source]


Automated maintenance of embryonic stem cell cultures

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2007
Stefanie Terstegge
Abstract Embryonic stem cell (ESC) technology provides attractive perspectives for generating unlimited numbers of somatic cells for disease modeling and compound screening. A key prerequisite for these industrial applications are standardized and automated systems suitable for stem cell processing. Here we demonstrate that mouse and human ESC propagated by automated culture maintain their mean specific growth rates, their capacity for multi-germlayer differentiation, and the expression of the pluripotency-associated markers SSEA-1/Oct-4 and Tra-1-60/Tra-1-81/Oct-4, respectively. The feasibility of ESC culture automation may greatly facilitate the use of this versatile cell source for a variety of biomedical applications. Biotechnol. Bioeng. 2007;96: 195,201. © 2006 Wiley Periodicals, Inc. [source]


Population estimation of human embryonic stem cell cultures

BIOTECHNOLOGY PROGRESS, Issue 2 2010
Thomas Thurnherr
Abstract Traditionally, the population of human embryonic stem cell (hESC) culture is estimated through haemacytometer counts, which include harvesting the cells and manually analyzing a fraction of an entire population. Obviously, through this highly invasive method, it is not possible to preserve any spatial information on the cell population. The goal of this study is to identify a fast and consistent method for in situ automated hESC population estimation to quantitatively estimate the cell growth. Therefore, cell cultures were fixed, stained, and their nuclei imaged through high-resolution microscopy, and the images were processed with different image analysis techniques. The proposed method first identifies signal and background by computing an image specific threshold for image segmentation. By applying a morphological operator (watershed), we split most physically overlapping nuclei, leading to a pixel area distribution of isolated signal areas on the image. On the basis of this distribution, we derive a nucleus area model, describing the distribution of the area of cell debris, single nuclei, and small groups of connected nuclei. Through the model, we can give a quantitative estimation of the population. The focus of this study is on low-density human embryonic stem cell populations; hence cultures were measured at days 2,3 after seeding. Compared with manual cell counts, the automatic method achieved higher accuracy with <6% error. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]