Stationary Phase (stationary + phase)

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Stationary Phase

  • bonded stationary phase
  • c18 stationary phase
  • chiral stationary phase
  • early stationary phase
  • silica stationary phase

  • Terms modified by Stationary Phase

  • stationary phase cell

  • Selected Abstracts


    Development and Characterization of a New Stationary Phase for an Immunoadsorption Wall

    ARTIFICIAL ORGANS, Issue 5 2005
    Tsung-Hua Yang
    Abstract:, This study introduces a newly developed method for the formation of a stationary phase superficially embedded with immunoadsorbent, that is partially incomplete two-stage polymerization of acrylamide. Preliminary experimental studies show that binding activity of the immunoadsorbent was satisfactorily maintained after immobilization. With an appropriate configuration of selected immunoadsorption matrices and immunoisolation barriers, it is hoped that this stationary phase could be used to resolve some difficult problems arising from the accumulation of certain middle molecular weight toxins not removed by other blood purification procedures. [source]


    New Approaches to the Formation of a Stationary Phase in an Immunoadsorption Wall

    ARTIFICIAL ORGANS, Issue 2 2005
    Tsung-Hua Yang
    Abstract:, The concept of an immunoadsorption wall, which combines the principles of immunoisolation and immunoadsorption, was proposed in 1999 to remove certain toxins accumulated in patients' blood. However, realization of this concept is obviously handicapped by the inefficient use of immunoadsorbent. This study is intended to improve the use of immunoadsorbent and optimize the formation of a stationary phase in an immunoadsorption wall. Polyacrylamide gel, which has the advantages of being chemically inert, having minimal diffusion effect and reasonable cost, could be considered as the medium of choice for a stationary phase. In this study, new approaches aimed at effective allocation of immunoadsorbent utilizing polyacrylamide gel are attempted. The advantages and disadvantages of these new approaches are discussed according to the preparation, formation, and outcome of a stationary phase. It is hoped that these new approaches could serve as a first step toward building an immunoadsorption wall. [source]


    Preparation and Evaluation of a Novel Cellulose Tris(N-3,5-dimethylphenylcarbamate) Chiral Stationary Phase

    CHINESE JOURNAL OF CHEMISTRY, Issue 1 2008
    Jin GE
    Abstract A novel cellulose tris(N -3,5-dimethylphenylcarbamate) (CDMPC) chiral stationary phase (CSP) was prepared by coating CDMPC on TiO2/SiO2, which was prepared by coating titania nanoparticles on silica through a self-assemble technique. At first, 2-hydroxyl-phenyl acetonitrile and , -phenylethanol were separated on this new CSP to evaluate the chiral separation ability. Then, two pesticides, matalaxyl and diclofop-methyl were separated. The influence of the mobile phase composition on the enantioselectivity was discussed, and the repeatability and stability of the CSP were studied too. [source]


    Preparation of Medium Cation Exchange Stationary Phase of Polymeric Matrix and Their Chromatographic Properties

    CHINESE JOURNAL OF CHEMISTRY, Issue 1 2007
    Gang Chen
    Abstract Based on the monodisperse poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads (PGMA/EDMA) with macropore as a medium, a new hydrophilic medium cation exchange (MCX) stationary phase for HPLC was synthesized by a new chemically modified method. The stationary phase was evaluated with the property of ion exchange, separability, reproducibility, hydrophilicity, effect of salt concentration, salt types, column loading and pH on the separation and retention of proteins in detail. It was found that it follows ion exchange chromatographic (IEC) retention mechanism. The measured bioactivity recovery for lysozyme was (96±5)%. The dynamic protein loading capacity of the synthesized MCX packings was 21.8 mg/g. Five proteins were almost completely separated within 6.0 min at a flow rate of 4 mL/min using the synthesized MCX resin. The MCX resin was also used for the rapid separation and purification of lysozyme from egg white with only one step. The purity and specific bioactivity of the purified lysozyme was found more than 95% and 70345 U/mg, respectively. [source]


    Cover Picture: Electrophoresis 16'2010

    ELECTROPHORESIS, Issue 17 2010
    Article first published online: 7 SEP 2010
    Issue no. 17 is a regular issue comprising 18 manuscripts distributed over 5 separate parts. Part I has 7 research articles on some aspects of proteins and cell separations. Part II has 3 research articles on nucleic acid research including cloning/amplification, gene regulation and STR analysis. Part III offers ways of measuring diffusion and binding constants in two separate articles. Concentration and detection approaches are treated in 4 research articles making up Part IV. The last two articles in this issue (Part V) are on CEC and EKC describing a mixed mode monolithic stationary phase and a cyclodextrin-modified MEEKC. Featured articles include: Lamp-based wavelength-resolved fluorescence detection for protein capillary electrophoresis: Set-up and detector performance ((doi: 10.1002/elps.201000246)) Electromigration diffusivity spectrometry: A way for simultaneous determination of diffusion coefficients from mixed samples ((doi: 10.1002/elps.201000252)) Sample stacking capillary electrophoretic microdevice for highly sensitive mini Y short tandem repeat genotyping ((doi: 10.1002/elps.201000270)) [source]


    Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase

    ELECTROPHORESIS, Issue 13 2010
    Patricia W. Stege
    Abstract The finding of melatonin, the often called "hormone of darkness" in plants opens an interesting perspective associated to the plethora of health benefits related to the moderate consumption of red wine. In this study, the implementation of a new method for the determination of melatonin in complex food matrices by CEC with immobilized carboxylic multi-walled carbon nanotubes as stationary phase is demonstrated. The results indicated high electrochromatographic resolution, good capillary efficiencies and improved sensitivity respect to those obtained with conventional capillaries. In addition, it was demonstrated highly reproducible results between runs, days and columns. The LOD for melatonin was 0.01,ng/mL. The method was successfully applied to the determination of melatonin in red and white wine, grape skin and plant extracts of Salvia officinalis L. [source]


    CEC-ESI ion trap MS of multiple drugs of abuse

    ELECTROPHORESIS, Issue 7 2010
    Zeineb Aturki
    Abstract This article describes a method for the separation and determination of nine drugs of abuse in human urine, including amphetamines, cocaine, codeine, heroin and morphine. This method was based on SPE on a strong cation exchange cartridge followed by CEC-MS. The CEC experiments were performed in fused silica capillaries (100,,m×30,cm) packed with a 3,,m cyano derivatized silica stationary phase. A laboratory-made liquid junction interface was used for CEC-MS coupling. The outlet capillary column was connected with an emitter tip that was positioned in front of the MS orifice. A stable electrospray was produced at nanoliter per minute flow rates applying a hydrostatic pressure (few kPa) to the interface. The coupling of packed CEC columns with mass spectrometer as detector, using a liquid junction interface, provided several advantages such as better sensitivity, low dead volume and independent control of the conditions used for CEC separation and ESI analysis. For this purpose, preliminary experiments were carried out in CEC-UV to optimize the proper mobile phase for CEC analysis. Good separation efficiency was achieved for almost all compounds, using a mixture containing ACN and 25,mM ammonium formate buffer at pH 3 (30:70, v/v), as mobile phase and applying a voltage of 12,kV. ESI ion-trap MS detection was performed in the positive ionization mode. A spray liquid, composed by methanol,water (80:20, v/v) and 1% formic acid, was delivered at a nano-flow rate of ,200,nL/min. Under optimized CEC-ESI-MS conditions, separation of the investigated drugs was performed within 13,min. CEC-MS and CEC-MS2 spectra were obtained by providing the unambiguous confirmation of these drugs in urine samples. Method precision was determined with RSDs values ,3.3% for retention times and ,16.3% for peak areas in both intra-day and day-to-day experiments. LODs were established between 0.78 and 3.12,ng/mL for all compounds. Linearity was satisfactory in the concentration range of interest for all compounds (r2,0.995). The developed CEC-MS method was then applied to the analysis of drugs of abuse in spiked urine samples, obtaining recovery data in the range 80,95%. [source]


    Cellulose dimethylphenylcarbamate-immobilized zirconia for chiral separation in reversed-phase CEC

    ELECTROPHORESIS, Issue 22 2009
    Jurim Gwon
    Abstract Cellulose dimethylphenylcarbamate (CDMPC)-immobilized zirconia (CDMPCZ) was used as a chiral stationary phase for enantioseparation of a set of nine racemic compounds in reversed-phase CEC. Influences of the type and composition of organic modifier and the applied voltage on enantioseparation were examined. Separation data on CDMPCZ were also compared with those on CDMPC-immobilized silica (CDMPCS). Enantiomers of the analytes investigated are well separated in ACN/phosphate buffer mobile phases. Better enantioselectivity and resolution were obtained with ACN than MeOH as the organic modifier. Retention was longer but better enantioselectivity and resolution were obtained on CDMPCZ than CDMPCS. [source]


    Etched succinate-functionalized silica hydride stationary phase for open-tubular CEC

    ELECTROPHORESIS, Issue 22 2009
    Jian-Lian Chen
    Abstract An open-tubular (OT) CEC column was designed to anchor ionizable succinate-functionalized ligands onto a silica hydride-based stationary phase through surface etching, silanization, and hydrosilation reactions beginning from a bare fused-silica tube. The modified columns that were produced in each step were monitored by analysis of the effect of performance of EOF on the changes of pH values, concentrations, and the amount of ACN added in the running buffers. By tracking the EOF patterns between columns, the author determined that the surface composition of the final product column was a combination of silanols, silica hydrides, and succinate ligands. Furthermore, lower loading volumes of the succinate ligands prepared for the hydrosilation reaction served to complete the mixed-mode OT-CEC columns, and subsequently to carry out the separation of six phenyl alcohols. Studies on the elution order of these alcohols identified the presence of chromatographic interactions in addition to electrophoresis. Based on the employment of a solvation parameter model, these interactions likely included dispersion interactions, dipole-type interactions, and interactions arising through the polarizable electrons in the solute. The optimum buffer conditions for CEC separations of phenyl alcohols, carbonyl-substituted phenols, and a mixture of nucleosides and thymine were a phosphate buffer (50,mM, pH 10.51), a borate buffer (50,mM, pH 8.62), and a borate buffer (50,mM, pH 9.50), respectively. Overall, the hydride-based stationary phases with ionizable ligands were successfully applied to the OT-CEC separations, and these results confidently propose an ideal route to the synthesis of novel OT-CEC columns. [source]


    Preparation and evaluation of the highly cross-linked poly(1-hexadecane-co-trimethylolpropane trimethacrylate) monolithic column for capillary electrochromatography

    ELECTROPHORESIS, Issue 20 2009
    Minghua Lu
    Abstract In this paper, a novel highly cross-linked porous monolithic stationary phase having a long alkyl chain ligand (C16) was introduced and evaluated in CEC. The monolithic stationary phase was prepared by in situ copolymerization of 1-hexadecene, trimethylolpropane trimethacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in the presence of ternary porogenic solvent (cyclohexanol/1,4-butanediol/water). In preparing monoliths, the ternary cross-linker trimethylolpropane trimethacrylate was usually applied to preparing molecularly imprinted polymers or molecularly imprinted solid-phase extraction, instead of binary cross-linker ethylene dimethacrylate. 1-Hexadecene was introduced to provide the non-polar sites (C16) for chromatographic retention, while AMPS was used to generate the EOF for transporting the mobile phase through the monolithic capillary. Monolithic columns were prepared by optimizing proportion of porogenic solvent and AMPS content in the polymerization solution as well as the cross-linkers. The monolithic stationary phases could generate a strong and stable EOF in various pH values and exhibit an RP-chromatographic behavior for neutral compounds. For charged compounds, the separation was mainly based on the association of hydrophobic, electrostatic and electrophoretic interaction. [source]


    Separation of peptides by open-tubular capillary electrochromatography using Fe(III)-deuteroporphyrin as a covalently attached stationary phase

    ELECTROPHORESIS, Issue 13 2009
    Ángel Yone
    Abstract The separation of seven biologically active peptides was attempted by open-tubular capillary electrochromatography in fused-silica capillaries chemically modified with iron (III)-deuteroporphyrin using UV-absorption detection at 214,nm. The effect of BGE pH and content of organic solvent modifier was investigated. The best separations were obtained in 25,mM phosphate (BGE), pH 4.0, containing 5%,v/v ACN and 10,mM hydroquinone, which was added to prevent gas bubble formation. Considering the method sensitivity, lower concentration LODs were obtained for all peptides in their open-tubular capillary electrochromatography separation as compared with their CZE separation in bare fused-silica capillary. The iron (III)-deuteroporphyrin column proved to be highly stable over time and showed acceptable precision of migration times and corrected peak areas (RSD in the range 2,4%). [source]


    Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC

    ELECTROPHORESIS, Issue 12 2009
    Ren-Guei Wu
    Abstract We present a micro-CEC chip carrying out a highly efficient separation of dsDNA fragments through vertically aligned multi-wall carbon nanotubes (MWCNTs) in a microchannel. The vertically aligned MWCNTs were grown directly in the microchannel to form straight nanopillar arrays as ordered and directional chromatographic supports. 1-Pyrenedodecanoic acid was employed for the surface modification of the MWCNTs' stationary phase to adsorb analytes by hydrophobic interactions. This device was used for separating dsDNA fragments of three different lengths (254, 360, and 572,bp), and fluorescence detection was employed to verify the electrokinetic transport in the MWCNT array. The micro-CEC separation of the three compounds was achieved in less than 300,s at a field strength of 66,V/cm due to superior laminar flow patterns and a lower flow resistance resulting from the vertically aligned MWCNTs being used as the stationary phase medium. In addition, a fivefold reduction of band broadening was obtained when the analyte was separated by the chromatographic MWCNT array channel instead of the CE channel. From all of the results, we suggest that an in situ grown and directional MWCNT array can potentially be useful for preparing more diversified forms of stationary phases for vertically efficient chip-based electrochromatography. [source]


    Integrated microdevice for preconcentration and separation of a wide variety of compounds by electrochromatography

    ELECTROPHORESIS, Issue 3 2009
    Gaelle Proczek
    Abstract An integrated microdevice was developed to couple on-chip SPE to separation by channel electrochromatography. An acrylate-based monolith was synthesized within a glass microdevice by photoinitiated polymerization. It was used for both separation and preconcentration by direct injection on the head of the stationary phase or by confining the preconcentration step in a given zone of the stationary phase. The composition of the polymerization mixture was chosen to achieve a monolithic material containing both hydrophobic and charged moieties to ensure an electroosmotic flow for separation. As a consequence the extraction procedure occurs via hydrophobic and ionic interactions. Neutral, ionizable and charged compounds were successfully preconcentrated and separated within the microdevice through electrochromatographic mechanisms, highlighting the versatility of this device. The performance of the integrated microdevice was demonstrated with the preconcentration and separation of a mixture of PAHs for which a signal enhancement factor (SEF) of 270 was achieved within 120,s of preconcentration. In the case of charged and ionizable compounds, according to the electrolyte composition, contributions of both reverse-phase and ion-exchange mechanisms were used to perform effective electrochromatographic preconcentration. A SEF of 250 was obtained for the model-charged compound within 20,s of preconcentration. Finally, the potentials of on-chip preconcentrate and separate both neutral and ionized compounds have been demonstrated using a mixture of model compounds. [source]


    Methacrylate-based monolithic column with mixed-mode hydrophilic interaction/strong cation-exchange stationary phase for capillary liquid chromatography and pressure-assisted CEC

    ELECTROPHORESIS, Issue 19 2008
    Jian Lin
    Abstract A novel porous polymethacrylate-based monolithic column by in situ copolymerization of 3-sulfopropyl methacrylate (SPMA) and pentaerythritol triacrylate in a binary porogenic solvent consisting of cyclohexanol/ethylene glycol was prepared. The monolith possessed in their structures bonded sulfonate groups and hydroxyl groups and was evaluated as a hydrophilic interaction and strong cation-exchange stationary phases in capillary liquid chromatography (cLC) and pressure-assisted CEC using small polar neutral and charged solutes. While the SPMA was introduced as multifunctional monomer, the pentaerythritol triacrylate was used to replace ethylene glycol dimethacrylate as cross-linker with much more hydrophilicity due to a hydroxyl sub-layer. The different characterization of monolithic stationary phases were specially designed and easily prepared by altering the amount of SPMA in the polymerization solution as well as the composition of the porogenic solvent for cLC and pressure-assisted CEC. The resulting monolith showed the different trends about the effect of the permeabilities on efficiency in the pressure-assisted CEC and cLC modes. A typical hydrophilic interaction chromatography mechanism was observed at higher organic solvent content (ACN%>70%) for polar neutral analytes. For polar charged analytes, both hydrophilic interaction and electrostatic interaction contributed to their retention. Therefore, for charged analytes, selectivity can be readily manipulated by changing the composition of the mobile phase (e.g., pH, ionic strength and organic modifier). With the optimized monolithic column, high plate counts reaching greater than 170,000,plates/m for pressure-assisted CEC and 105,000 plates/m for cLC were easily obtained, respectively. [source]


    Retention of proteins and metalloproteins in open tubular capillary electrochromatography with etched chemically modified columns,

    ELECTROPHORESIS, Issue 18 2008
    Joseph J. Pesek
    Abstract Etched chemically modified capillaries with two different bonded groups (pentyl and octadecyl) are compared for their migration behavior of several common proteins and metalloproteins as well as metalloproteinases. Migration times, efficiency and peak shape are evaluated over the pH range of 2.1,8.1 to determine any effects of the bonded group on the electrochromatographic behavior of these compounds. One goal was to determine if the relative hydrophobicity of the stationary phase has a significant effect on proteins in the open tubular format of capillary electrochromatography as it does in HPLC. Reproducibility of the migration times is also investigated. [source]


    Carboxylic multi-walled carbon nanotubes as immobilized stationary phase in capillary electrochromatography,

    ELECTROPHORESIS, Issue 18 2008
    Lorena Sombra
    Abstract Carboxylic multi-walled carbon nanotubes (c-MWNT) have been immobilized into a fused-silica capillary for capillary electrochromatography. The c-MWNT were successfully incorporated after the silanization and coupling with glutaraldehyde on the inner surface of the capillary. The electrochromatographic features of the c-MWNT immobilized stationary phase have been evaluated for the analysis of different compounds of pharmaceutical interest. The results indicated high electrochromatographic resolution, good capillary efficiency and retention factors. In addition, highly reproducible results between runs, days and capillaries were obtained. [source]


    Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography

    ELECTROPHORESIS, Issue 15 2008
    Omar Gustafsson
    Abstract We report, for the first time, the use of underivatized cyclic olefin copolymer (COC, more specifically: Topas) as the substrate material and the stationary phase for capillary and microchip electrochromatography (CEC), and demonstrate chromatographic separations without the need of coating procedures. Electroosmotic mobility measurements in a 25,,m id Topas capillary showed a significant cathodic EOF that is pH-dependent. The magnitude of the electroosmotic mobility is comparable to that found in glass substrates and other polymeric materials. Open-tubular CEC was employed to baseline-separate three neutral compounds in an underivatized Topas capillary with plate heights ranging from 5.3 to 12.7,,m. The analytes were detected using UV absorbance at 254,nm, thus taking advantage of the optical transparency of Topas at short wavelengths. The fabrication of a Topas-based electrochromatography microchip by nanoimprint lithography is also presented. The microchip has an array of pillars in the separation column to increase the surface area. The smallest features that were successfully imprinted were around 2,,m wide and 5,,m high. No plasma treatment was used during the bonding, thus keeping the surface properties of the native material. An RP microchip electrochromatography separation of three fluorescently labeled amines is demonstrated on the underivatized microchip with plate heights ranging from 3.4 to 22,,m. [source]


    Open-tubular capillary electrochromatography using a capillary coated with octadecylamine-capped gold nanoparticles

    ELECTROPHORESIS, Issue 4 2008
    Qishu Qu Dr.
    Abstract Octadecylamine-capped gold nanoparticles (ODA-Au-NPs) were prepared and characterized by using UV,Vis adsorption spectrum, transmission electron chromatography (TEM), SEM, and FT-IR. A simple but robust hydrophobic coating was easily developed by flushing a capillary with a solution of ODA-Au-NPs, because the positive charges were carried by the nanoparticles which strongly adsorb to the negatively charged inner surface of a fused-silica capillary via electrostatic and hydrophobic interactions. The chromatographic characteristics of the coated capillary was investigated by varying the experimental parameters such as buffer pH, buffer concentration, and percentage of organic modifier in the mobile phase. The results show that (i) resolution between thiourea and naphthalene is almost the same when comparing the electrochromatograms obtained using pH,7 buffer as mobile phase after and before the capillary column was operated using pH,11 and 3 mobile phase; (ii) no significant changes in retention time and deterioration in peak efficiency were found after 60,runs of test aromatic mixtures; and (iii) column efficiency up to 189,000 theoretical plates/meter for testosterone was obtained. All of the results indicated that the coating could act as a stable stationary phase for open tubular CEC as well as for bioanalysis. [source]


    CEC separation of heterocyclic amines using methacrylate monolithic columns

    ELECTROPHORESIS, Issue 11 2007
    Elena Barceló-Barrachina
    Abstract Two methacrylate-based monolithic columns, one with a negatively charged group (sulfonic group) and another with a new monomer N,N -dimethylamino ethyl acrylate (DMAEA), were prepared and tested for the separation of basic compounds by CEC. This new monolithic stationary phase was prepared by the in situ polymerization of DMAEA with butyl methacrylate and ethylene dimethacrylate, using a ternary porogenic solvent consisting of water, 1-propanol and 1,4-butanediol. The performance of this column was evaluated by means of the analysis of a family of heterocyclic amines. Separation conditions such as pH, amount of organic modifier, ionic strength and elution mode (normal or counterdirectional flow) were studied. At the optimal running electrolyte composition, and using the counterdirectional mode, symmetrical electrochromatographic peaks were obtained, with the number of theoretical plates up to 30,000 and a good resolution between closely related peaks. The 2-acrylamido-2-methyl-1-propane-sulfonic acid column was used for CEC-MS, taking advantage of the compatibility of its elution mode (normal flow) with the MS coupling. [source]


    Hybrid silica monolithic column for capillary electrochromatography with enhanced cathodic electroosmotic flow

    ELECTROPHORESIS, Issue 21 2006
    Jiwei Hu
    Abstract A hybrid silica monolithic stationary phase for RP CEC was prepared by in,situ co-condensation of (3-mercaptopropyl)-trimethoxysilane (MPTMS), phenyltriethoxysilane (PTES), and tetraethoxysilane (TEOS) via a sol,gel process. The thiol groups on the surface of the stationary phase were oxidized to sulfonic acids by peroxytrifluoroacetic acid. The introduced sulfonic acid moieties on the monoliths were characterized by a strong and relatively stable EOF in a broad pH range from 2.35 to 7.0 in CEC. Aromatic acids and neutral compounds can be simultaneously separated in this column under cathodic EOF. The CEC column exhibited a typical RP chromatographic mechanism for neutral compounds due to the introduced phenyl groups. [source]


    (S)-Ibuprofen-imprinted polymers incorporating ,-methacryloxypropyl-trimethoxysilane for CEC separation of ibuprofen enantiomers

    ELECTROPHORESIS, Issue 21 2006
    Qi-Liang Deng
    Abstract In this report, a novel preparation method of molecularly imprinted polymers (MIPs) for CEC was developed. Molecularly imprinted monolithic columns for (S)-ibuprofen were prepared and evaluated, in which charged entities responsible for establishing EOF have been derived from ,-methacryloxypropyltrimethoxysilane (,-MAPS), which was hydrolyzed following copolymerization with 4-vinylpyridine (4-VPY) and ethylene glycol dimethacrylate,(EDMA). The EOF and molecular recognition of the stationary phase were investigated in aqueous and nonaqueous media, respectively. The experimental results indicated that the material showed a reasonably stable EOF and the prepared separation materials were capable of separating racemic ibuprofen, a task that could not be accomplished by MIPs prepared in parallel, using methacrylic acid (MAA) as a functional monomer. The efficiency at pH,3.2 for the first-eluted enantiomer and the last-eluted enantiomer (the imprinted analyte) were 128,700 and 2100,plates/m, respectively. [source]


    Capillary electrochromatography with zwitterionic stationary phase on the lysine-bonded poly(glycidyl methacrylate- co -ethylene dimethacrylate) monolithic capillary column

    ELECTROPHORESIS, Issue 12 2006
    Xiaoli Dong
    Abstract A polymer-based neutral monolithic capillary column was prepared by radical polymerization of glycidyl methacrylate and ethylene dimethacrylate in a 100,,m id fused-silica capillary, and the prepared monolithic column was subsequently modified based on a ring opening reaction of epoxide groups with 1,M,lysine in solution (pH,8.0) at 75°C for 10,h to produce a lysine chemically bonded stationary phases in capillary column. The ring opening reaction conditions were optimized so that the column could generate substantial EOF. Due to the zwitterionic functional groups of the lysine covalently bonded on the polymer monolithic rod, the prepared column can generate cathodic and anodic EOF by varying the pH values of running buffer during CEC separation. EOF reached the maximum of ,2.0×10,8,m2v,1s,1 and 2.6×10,8,m2v,1s,1 with pH of the running buffer of 2.25 and 10, respectively. As a consequence, neutral compounds, ionic solutes such as phenols, aromatic acids, anilines, and basic pharmaceuticals were all successfully separated on the column by CEC. Hydrophobic interaction is responsible for separation of neutral analytes. In addition, the electrostatic and hydrophobic interaction and the electrophoretic migration play a significant role in separation of the ionic or ionizable analytes. [source]


    Analyses of preservatives by capillary electrochromatography using methacrylate ester-based monolithic columns

    ELECTROPHORESIS, Issue 18-19 2004
    Hsi-Ya Huang
    Abstract Five common food preservatives were analyzed by capillary electrochromatography, utilizing a methacrylate ester-based monolithic capillary as separation column. In order to optimize the separation of these preservatives, the effects of the pore size of the polymeric stationary phase, the pH and composition of the mobile phase on separation were examined. For all analytes, it was found that an increase in pore size caused a reduction in retention time. However, separation performances were greatly improved in monolithic columns with smaller pore sizes. The pH of the mobile phase had little influence on separation resolution, but a dramatic effect on the amount of sample that was needed to be electrokinetically injected into the monolithic column. In addition, the retention behaviors of these analytes were strongly influenced by the level of acetonitrile in the mobile phase. An optimal separation of the five preservatives was obtained within 7.0 min with a pH 3.0 mobile phase composed of phosphate buffer and acetonitrile 35:65 v/v. Finally, preservatives in real commercial products, including cold syrup, lotion, wine, and soy sauces, were successfully determined by the methacrylate ester-based polymeric monolithic column under this optimized condition. [source]


    High-efficiency peptide analysis on monolithic multimode capillary columns: Pressure-assisted capillary electrochromatography/capillary electrophoresis coupled to UV and electrospray ionization-mass spectrometry

    ELECTROPHORESIS, Issue 21 2003
    Alexander R. Ivanov
    Abstract High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 ,m inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n -propanol and formamide as porogens and azobisisobutyronitrile as initiator. N -Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300,000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method. [source]


    Advances in sol-gel based columns for capillary electrochromatography: Sol-gel open-tubular columns

    ELECTROPHORESIS, Issue 22-23 2002
    Abdul Malik
    Abstract The development of sol-gel open-tubular column technology in capillary electrochromatography (CEC) is reviewed. Sol-gel column technology offers a versatile means of creating organic-inorganic hybrid stationary phases. Sol-gel column technology provides a general approach to column fabrication for microseparation techniques including CEC, and is amenable to both open-tubular and monolithic columns. Direct chemical bonding of the stationary phase to the capillary inner walls provides enhanced thermal and solvent stability to sol-gel columns. Sol-gel stationary phases inherently possess higher surface area, and thus provide an effective one-step alternative to conventional open-tubular column technology. Sol-gel column technology is applicable to both silica-based and transition metal oxide-based hybrid stationary phases, and thus, provides a great opportunity to utilize advanced material properties of a wide range of nontraditional stationary phases to achieve enhanced selectivity in analytical microseparations. A wide variety of stationary phase ligands can be chemically immobilized on the capillary inner surface using a single-step sol-gel procedure. Sol-gel chemistry can be applied to design stationary phases with desired chromatographic characteristics, including the possibility of creating columns with either a positive or a negative charge on the stationary phase surface. This provides a new tool to control electroosmotic flow (EOF) in the column. Column efficiencies on the order of half a million theoretical plates per meter have been reported for sol-gel open-tubular CEC columns. The selectivity of sol-gel stationary phases can be easily fine-tuned by adjusting the composition of the coating sol solution. Open-tubular columns have significant advantages over their packed counterparts because of the simplicity in column making and hassle-free fritless operation. Open-tubular CEC columns possess low sample capacity and low detection sensitivity. Full utilization of the analytical potential of sol-gel open-tubular columns will require a concomitant development in the area of high-sensitivity detection technology. [source]


    Improved ,-Glucanase Production by a Recombinant Escherichia coli Strain using Zinc-Ion Supplemented Medium

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 3 2007
    U. Beshay
    Abstract In order to investigate the suitability of different metal chelates for affinity chromatography, an expression vector was constructed. It contained a hybrid ,-glucanase as a model protein fused with a His6 -tag and a secretion cassette providing the ability to secrete ,-glucanase into the culture medium. Supplementation of zinc to the medium led to a rapidly increased expression and release of the target protein into the cultivation medium. Results in respect to the supplementation of the commonly used Terrific Broth "TB-medium" with different metal ions are reported with special emphasis on the influence of zinc ions. A concentration of zinc ions in the order of about 0.175 mM led to optimal results. Batch cultivation under well-controlled conditions showed that the growth behavior did not change significantly by adding zinc ions. Growth in a stirred tank bioreactor was much faster in unsupplemented TB-medium compared to shake flask experiments leading to a much higher biomass concentration (15,g/L instead of 3,g/L). The secretion of ,-glucanase under theses conditions started at the transition into the stationary phase and increased to yield an extracellular activity of 1350,U/mL at the end of the fermentation process. An even higher yield of extracellular ,-glucanase (2800,U/mL) was reached when the fermentation was carried out with TB-medium supplemented with 0.175,mM ZnSO4. [source]


    Characterizing the regulation of the Pu promoter in Acinetobacter baylyi ADP1

    ENVIRONMENTAL MICROBIOLOGY, Issue 7 2008
    Wei E. Huang
    Summary Effective gene trapping and screening requires sensory and regulatory compatibility of both host and exogenous systems. The naturally competent bacterium Acinetobacter baylyi ADP1 is able to efficiently take up and integrate exogenous DNA into the chromosome, making it an attractive host system for a wide range of metagenomic applications. To test the ability of A. baylyi ADP1 to express the XylR-regulated Pu promoter from Pseudomonas putida mt-2, we have constructed and examined an A. baylyi ADP1 strain, ADPWH- Pu-lux-xylR. The Pu promoter in ADPWH- Pu-lux-xylR was specifically induced by toluene, m -, p - and o- xylene. The substrate-induced Pu promoter was highly dependent on the growth medium: it was repressed in rich media until stationary phase, but was immediately induced in minimal medium with glucose as the sole carbon source (MMG). However, the Pu promoter was repressed in MMG when it was supplemented with 5 g l,1 yeast extract. Further investigation showed that the Pu promoter in MMG was repressed by 0.5 g l,1 aspartic acid or asparagine, but not repressed by glutamine. Changing the carbon/nitrogen ratios by addition of ammonia did not significantly affect the Pu promoter activity but addition of nitrate did. These results show that A. baylyi ADP1 reproduced characteristics of the XylR-regulated Pu promoter observed in its original host. It demonstrates that A. baylyi could provide an excellent genetic host for a wide range of functional metagenomic applications. [source]


    Environmental tuning of mutation rates

    ENVIRONMENTAL MICROBIOLOGY, Issue 2 2006
    Claude Saint-Ruf
    Summary Through their life cycles, bacteria experience many different environments in which the relationship between available energy resources and the frequency and the nature of various stresses is highly variable. In order to survive in such changeable environments, bacteria must balance the need for nutritional competence with stress resistance. In Escherichia coli natural populations, this is most frequently achieved by changing the regulation of the RpoS sigma factor-dependent general stress response. One important secondary consequence of altered regulation of the RpoS regulon is the modification of mutation rates. For example, under nutrient limitation during stationary phase, the high intracellular concentration of RpoS diminishes nutritional competence, increases stress resistance, and, by downregulating the mismatch repair system and downregulating the expression of the dinB gene (coding for PolIV translesion synthesis polymerase) increases mutation rates. The reduction of the intracellular concentration of RpoS has exactly opposite effects on nutritional competence, stress resistance and mutation rates. Therefore, the natural selection that favours variants having the highest fitness under different environmental conditions results in high variability of stress-associated mutation rates in those variants. [source]


    Phenotypical variation in a toxic strain of the phytoplankter, Cylindrospermopsis raciborskii (nostocales, cyanophyceae) during batch culture

    ENVIRONMENTAL TOXICOLOGY, Issue 6 2001
    Peter R. Hawkins
    Abstract A nonaxenic strain of Cylindrospermopsis raciborskii Woloszynska (AWT 205) was grown in batch culture, with and without nitrate as the primary N source. Rapid log-phase growth with nitrate was 1.0 doubling/day versus 0.3 doubling/day without nitrate. Cylindrospermopsin (CYN) production was measured by HPLC. The rate of intracellular CYN production matched cell division rate for both the diazotrophies at cell densities less than 107 cell/ml. At cell density >107 cell/ml, additional resource limitation in batch culture slowed log-phase growth to 0.04 division/day and cell division and CYN production decoupled. Intracellular CYN concentration increased at a rate of 0.08 doubling/day, twice the cell division rate. Extracellular CYN as a proportion of the total CYN increased from 20% during the rapid growth phase, to 50% during the slow growth phase. The total CYN yield from cultures grown out to stationary phase (55 days) exceeded 2 mg CYN/l. C. raciborskii cells in log-phase growth, exposed to 1 ppm copper (as copper sulphate), lysed within 24 hours. After copper treatment, all CYN was in the filterable fraction. These findings imply that in naturally occurring blooms of C. raciborskii, the movement of intracellular CYN into solution will be the greatest during stationary phase, when intracellular concentrations are highest and cell lysis is more frequent. The application of algicides that promote cell lysis will exacerbate this effect. © 2001 John Wiley & Sons, Inc. Environ Toxicol 16: 460,467, 2001 [source]


    Biotransformation of n -hexadecane by cell suspension cultures of Cinchona robusta and Dioscorea composita

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2001
    Carolina Vega-Jarquin
    Abstract This manuscript evaluates the phytotoxicity and biotransformation of n -hexadecane as well as peroxidase activity and cytochrome P450 concentration in microsomes for cell suspension cultures of Cinchona robusta and Dioscorea composita. Phytotoxicity was evaluated based on viability and growth. Cell cultures were exposed to a 2 and 4% (v/v) dose of n -hexadecane. The biotransformation of n -hexadecane was determined based on labeled recovery in polar, nonpolar, and cell residue fractions after cell culture extraction during exponential cell growth phase and stationary phase. Differences were observed in accumulation of label during cell growth phase and stationary phase for the cells of the two plants. Differences also were observed between phases for label in polar and nonpolar fractions. Thin-layer chromatography determined labeled intermediates and some were identified. The activity of peroxidase and concentration of cytochrome P450 was lower in C. robusta than in controls and greater in D. composita than in controls. In vitro biotransformation was not successful. [source]