Static Pressure (static + pressure)

Distribution by Scientific Domains

Terms modified by Static Pressure

  • static pressure distribution

  • Selected Abstracts


    Low-voltage electroosmosis pump for stand-alone microfluidics devices

    ELECTROPHORESIS, Issue 1-2 2003
    Yuzuru Takamura
    Abstract Two types of low-voltage electroosmosis pumps were developed using microfabrication technology for usage in handy or stand-alone applications of the micrototal analysis systems (,-TAS) and the lab-on-a-chip. This was done by making a thin (<,1 ,m) region in the flow path and by only applying voltages near this thin region using electrodes inserted into the flow path. The inserted electrodes must be free from bubble formation and be gas-tight in order to avoid pressure leakage. For these electrodes, Ag/AgCl or a gel salt bridge was used. For patterning the gel on the chip, a hydrophilic photopolymerization gel and a photolithographic technique were optimized for producing a gel with higher electric conductivity and higher mechanical strength. For high flow rate application, wide (33.2 mm) and thin (400 nm) pumping channels were compacted into a 1 mm×6 mm area by folding. This pump achieves an 800 Pa static pressure and a flow of 415 nL/min at 10 V. For high-pressure application, a pump was designed with the thin and thick regions in series and positive and negative electrodes were inserted between them alternatively. This pump could increase the pumping pressure without increasing the supply voltage. A pump with 10-stage connections generated a pressure of 25 kPa at 10 V. [source]


    Effect of tabs on impinging heat transfer

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 7 2001
    Munehiko Hiwada
    Abstract The present work experimentally investigates the effect of vortex generators, in the form of small tabs projecting normally into the flow at the nozzle exit, on the fluid flow and heat transfer characteristics of an axisymmetric impinging air jet in the subcritical Reynolds number range. With this comes the expectation of a large eddy structure variation and the possibility of active control. Local heat transfer and static pressure were measured on a target plate for a round air jet issuing from a circular nozzle with rectangular tabs whose numbers and lengths changed at a constant nozzle-to-plate gap (L/d = 8) and jet Reynolds number (Re = 34,000). The main results are the following: When two tabs were set at the exit of the circular nozzle, Cpw and Nu profiles flatten in the direction of the tab setting. In the case of three tabs, however, among both Cpw and Nu profiles a concentric profile is found, as well as in the case without any tabs. © 2001 Scripta Technica, Heat Trans Asian Res, 30(7): 561,570, 2001 [source]


    Rheological characteristics of solid,fluid transition in dry granular dense flows: A thermodynamically consistent constitutive model with a pressure-ratio order parameter

    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2010
    Chung Fang
    Abstract Dry granular flows are characterized as quasi-static, dense and collisional states by the interactions among the grains, which is indexed macroscopically by an internal variable, called the order parameter defined as the square root of the static pressure to the total pressure. The solid,fluid state transition is regarded as a second-order phase transition process, and is described by a kinematic evolution of the order parameter. The thermodynamic analysis, based on the Müller,Liu entropy principle, is employed to deduce the equilibrium responses of the constitutive equations, while the dynamic responses are postulated on the basis of a quasi-linear and the second-order Ginzburg,Landau phase transition theories. The obtained model is applied to study the rheological characteristics of a dry granular dense flow between two infinite parallel plates, of which the results are compared with those from DEM simulations to estimate the model validity. The present study provides a general framework for the theoretical justifications on the thermodynamic consistencies of order-parameter-based constitutive models, and can be extended to flows in quasi-static or collisional states. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    A cost-effective operating strategy to reduce energy consumption in a HVAC system

    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 6 2008
    Nabil Nassif
    Abstract The operation of the building heating, ventilating, and air conditioning (HVAC) system is a critical activity in terms of optimizing the building's energy consumption, ensuring the occupants' comfort, and preserving air quality. The performance of HVAC systems can be improved through optimized supervisory control strategies. Set points can be adjusted by the optimized supervisor to improve the operating efficiency. This paper presents a cost-effective building operating strategy to reduce energy costs associated with the operation of the HVAC system. The strategy determines the set points of local-loop controllers used in a multi-zone HVAC system. The controller set points include the supply air temperature, the supply duct static pressure, and the chilled water supply temperature. The variation of zone air temperatures around the set point is also considered. The strategy provides proper set points to controllers for minimum energy use while maintaining the required thermal comfort. The proposed technology is computationally simple and suitable for online implementation; it requires access to some data that are already measured and therefore available in most existing building energy management and control systems. The strategy is evaluated for a case study in an existing variable air volume system. The results show that the proposed strategy may be an excellent means of reducing utility costs associated with maintaining or improving indoor environmental conditions. It may reduce energy consumption by about 11% when compared with the actual strategy applied on the investigated existing system. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Analytical and numerical investigation of the solar chimney power plant systems

    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2006
    Ming Tingzhen
    Abstract There is a surge in the use of the solar chimney power plant in the recent years which accomplishes the task of converting solar energy into kinetic energy. As the existing models are insufficient to accurately describe the mechanism, a more comprehensive model is advanced in this paper to evaluate the performance of a solar chimney power plant system, in which the effects of various parameters on the relative static pressure, driving force, power output and efficiency have been further investigated. Using the solar chimney prototype in Manzanares, Spain, as a practical example, the numerical studies are performed to explore the geometric modifications on the system performance, which show reasonable agreement with the analytical model. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Vibrational properties of InP under pressure: a molecular-dynamics study

    PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 1 2007
    Paulo S. Branício
    Abstract Dynamical properties of InP in the zincblende (ZB) are investigated using isothermal,isobaric molecular-dynamics simulations based on a proposed interaction potential for InP consisting of two- and three-body terms. The two-body term represents steric repulsion, Coulomb interactions due to charge transfer, induced charge,dipole interaction, and van der Waals dipole,dipole interaction. The three-body term represents covalent bond bending and stretching. The model is fitted to reproduce crystalline lattice constant, cohesive energy, and the structural transition pressure from ZB to rocksalt. The effects of hydro- static pressure and temperature on the vibrational density-of-states, phonon anharmonicity, dynamic Debye,Waller factor, thermal expansion coefficient are described as well as the pressure induced structural phase transformation. Results are consistent with available experimental data, in particular the calculated equation of state and phonon density-of-states have very good agreement. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    A computational study on the characteristics of airflow in bilateral abductor vocal fold immobility,

    THE LARYNGOSCOPE, Issue 9 2010
    M. Kür, at Gökcan MD
    Abstract Objectives/Hypothesis: To evaluate airway sufficiency and airflow dynamics in a group of patients who underwent a posterior transverse laser cordotomy (PTLC) procedure. Study Design: Mixed methods research, university hospital setting. Methods: Sixteen patients who underwent a PTLC procedure volunteered to be involved in this study. Dyspnea levels, voice, and glottic opening in indirect laryngoscopy were evaluated subjectively. The airway was evaluated objectively by pulmonary function tests, and glottic areas were measured from axial computed tomography (CT) images. The control group consisted of 63 subjects from the tomography archive. For computational fluid dynamics (CFD) analyses, two subjects from the study group were chosen on the basis of obstruction level, and a normal female subject was selected from the control group. Cartesian coordinates for airway boundaries were determined from axial CT images, and a three-dimensional computational model of the larynx was constructed. Flow simulations were performed with two different flow conditions during inspiration. Comparison of velocity, static pressure, turbulence intensity, and wall shear stress distribution values were made between selected cases and control. Results: Pulmonary data varied widely and did not correlate with the size of the glottic area or dyspnea level. CFD analyses revealed that in addition to obstruction at the glottic level, aerodynamic properties of the larynx are altered due to loss in muscular tonus. Also, the contour of the glottic opening was found to be very important in determining the character of airflow as laminar or turbulent. Conclusions: Patients have considerable differences in their flow patterns and force distributions during respiration. Patient-specific models may help in evaluation and treatment planning. Laryngoscope, 2010 [source]


    Computational Fluid Dynamics and Vascular Access

    ARTIFICIAL ORGANS, Issue 7 2002
    Ulf Krueger
    Abstract: Anastomotic intimal hyperplasia caused by unphysiological hemodynamics is generally accepted as a reason for dialysis access graft occlusion. Optimizing the venous anastomosis can improve the patency rate of arteriovenous grafts. The purpose of this study was to examine, evaluate, and characterize the local hemodynamics and, in particular, the wall shear stresses in conventional venous end-to-side anastomosis and in patch form anastomosis (Venaflo) by three-dimensional computational fluid dynamics (CFD). We investigated the conventional form of end-to-side anastomosis and a new patch form by numerical simulation of blood flow. The numerical simulation was done with a finite volume-based algorithm. The anastomotic forms were constructed with usual size and fixed walls. Subdividing the flow domain into multiple control volumes solved the fundamental equations. The boundary conditions were identical for both forms. The velocity profile of the patch form is better than that for the conventional form. The region of high static pressure caused by flow stagnation is reduced on the vein floor. The anastomotic wall shear stress is decreased. The results of this study strongly support patch form use to reduce the incidence of intimal hyperplasia and venous anastomotic stenoses. [source]


    X-ray emission spectroscopy with a laser-heated diamond anvil cell: a new experimental probe of the spin state of iron in the Earth's interior

    JOURNAL OF SYNCHROTRON RADIATION, Issue 5 2005
    Jung-Fu Lin
    Synchrotron-based X-ray emission spectroscopy (XES) is well suited to probing the local electronic structure of 3d transition metals such as Fe and Mn in their host phases. The laser-heated diamond anvil cell technique is uniquely capable of generating ultra-high static pressures and temperatures in excess of 100,GPa and 3000,K. Here X-ray emission spectroscopy and X-ray diffraction have been interfaced with the laser-heated diamond cell for studying the electronic spin states of iron in magnesiowüstite-(Mg0.75,Fe0.25)O and its crystal structure under lower-mantle conditions. X-ray emission spectra of the ferrous iron in a single crystal of magnesiowüstite-(Mg0.75,Fe0.25)O indicate that a high-spin to low-spin transition of ferrous iron occurs at 54 to 67,GPa and 300,K and the ferrous iron remains in the high-spin state up to 47,GPa and 1300,K. This pilot study points to the unique capability of the synchrotron-based XES and X-ray diffraction techniques for addressing the issue of electronic spin transition or crossover in 3d transition metals and compounds under extreme high- P,T conditions. [source]