Star Formation (star + formation)

Distribution by Scientific Domains

Kinds of Star Formation

  • ongoing star formation
  • recent star formation

  • Terms modified by Star Formation

  • star formation activity
  • star formation efficiency
  • star formation history
  • star formation rate

  • Selected Abstracts


    Star formation triggered by SN explosions: an application to the stellar association of , Pictoris

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2006
    C. Melioli
    ABSTRACT In the present study, considering the physical conditions that are relevant in interactions between supernova remnants (SNRs) and dense molecular clouds for triggering star formation we have built a diagram of SNR radius versus cloud density in which the constraints above delineate a shaded zone where star formation is allowed. We have also performed fully 3D radiatively cooling numerical simulations of the impact between SNRs and clouds under different initial conditions in order to follow the initial steps of these interactions. We determine the conditions that may lead either to cloud collapse and star formation or to complete cloud destruction and find that the numerical results are consistent with those of the SNR,cloud density diagram. Finally, we have applied the results above to the , Pictoris stellar association which is composed of low-mass post-T Tauri stars with an age of 11 Myr. It has been recently suggested that its formation could have been triggered by the shock wave produced by an SN explosion localized at a distance of about 62 pc that may have occurred either in the Lower Centaurus Crux or in the Upper Centaurus Lupus which are both nearby older subgroups of that association (Ortega and co-workers). Using the results of the analysis above we have shown that the suggested origin for the young association at the proposed distance is plausible only for a very restricted range of initial conditions for the parent molecular cloud, that is, a cloud with a radius of the order of 10 pc and density of the order of 20 cm,3 and a temperature of the order of 50,100 K. [source]


    Erratum: Star formation and dust attenuation properties in galaxies from a statistical ultraviolet-to-far-infrared analysis

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2006
    D. Burgarella
    No abstract is available for this article. [source]


    Star formation in close pairs selected from the Sloan Digital Sky Survey

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2004
    B. Nikolic
    ABSTRACT The effect of galaxy interactions on star formation has been investigated using Data Release One of the Sloan Digital Sky Survey (SDSS). Both the imaging and spectroscopy data products have been used to construct a catalogue of nearest companions to a volume-limited (0.03 < z < 0.1) sample of galaxies drawn from the main galaxy sample of SDSS. Of the 13 973 galaxies in the volume-limited sample, we have identified 12 492 systems with companions at projected separations less than 300 kpc. Star formation rates for the volume-limited sample have been calculated from extinction and aperture corrected H, luminosities and, where available, IRAS data. Specific star formation rates were calculated by estimating galaxy masses from z -band luminosities, and r -band concentration indices were used as an indicator of morphological class. The mean specific star formation rate is significantly enhanced for projected separations less than 30 kpc. For late-type galaxies, the correlation extends out to projected separations of 300 kpc and is most pronounced in actively star-forming systems. The specific star formation rate is observed to decrease with increasing recessional velocity difference, but the magnitude of this effect is small compared to that associated with the projected separation. We also observe a tight relationship between the concentration index and pair separation; the mean concentration index is largest for pairs with separations of approximately 75 kpc and declines rapidly for separations smaller than this. This is interpreted as being due to the presence of tidally triggered nuclear starbursts in close pairs. Further, we find no dependence of star formation enhancement on the morphological type or mass of the companion galaxy. [source]


    Star formation in the LMC: Comparative CCD observations of young stellar populations in two giant molecular clouds

    ASTRONOMISCHE NACHRICHTEN, Issue 8 2009
    J. Ruppert
    Abstract This work deals with a CCD imaging study at optical and near-infrared wavelength oftwo giant molecular clouds (plus a control field) in the southern region of the Large Magellanic Cloud, one ofwhich shows multiple signs of star formation, whereas the other does not. The observational data from VLT FORS2 (R band) and NTT SOFI (Ks band) have been analyzed to derive luminosity functions and color-magnitude diagrams. The young stellar content of these two giant molecular clouds is compared and confirmed to be different, in the sense that the apparently "starless" cloud has so far formed only low-luminosity, low-mass stars (fainter than mKs , 16.5 mag, not seen by 2MASS), while the other cloud has formed both faint low-mass and luminous high-mass stars. The surface density excess oflow-luminosity stars (,2 per square arcmin) in the "starless" cloud with respect to the control field is about 20% whereas the excess is about a factor of 3 in the known star-forming cloud. The difference may be explained theoretically by the gravo-turbulent evolution of giant molecular clouds, one being younger and less centrally concentrated than the other (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    The influence of precursor's length and [diepoxide]o/[MPEG]o ratio on poly(ethylene glycol) star formation: The quantitative conversion of both precursors

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2007
    Grzegorz Lapienis
    The analysis of the relation between Mn of MPEG and [diepoxide]o/[MPEG]o ratio allowed to determine the demarcation line for conditions giving either soluble stars: DGNG (,) and DGEG (,) or insoluble products: DGNG (,) and DGEG (,). Then conditions have been found for a quantitative conversion of both MPEG and diepoxides into stars. This was possible only for MPEG of Mn , 2000. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.] [source]


    Feedback under the microscope , II.

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
    Heating, gas uplift, mixing in the nearest cluster core
    ABSTRACT Using a combination of deep (574 ks) Chandra data, XMM,Newton high-resolution spectra and optical H,+[N ii] images, we study the nature and spatial distribution of the multi-phase plasma in M87. Our results provide direct observational evidence of ,radio-mode' active galactic nuclei (AGN) feedback in action, stripping the central galaxy of its lowest entropy gas and therefore preventing star formation. This low entropy gas was entrained with and uplifted by the buoyantly rising relativistic plasma, forming long ,arms'. A number of arguments suggest that these arms are oriented within 15°,30° of our line-of-sight. The mass of the uplifted gas in the arms is comparable to the gas mass in the approximately spherically symmetric 3.8 kpc core, demonstrating that the AGN has a profound effect on its immediate surroundings. The coolest X-ray emitting gas in M87 has a temperature of ,0.5 keV and is spatially coincident with H,+[N ii] nebulae, forming a multi-phase medium where the cooler gas phases are arranged in magnetized filaments. We place strong upper limits of 0.06 M, yr,1 (at 95 per cent confidence) on the amount of plasma cooling radiatively from 0.5 to 0.25 keV and show that a uniform, volume-averaged heating mechanism could not be preventing the cool gas from further cooling. All of the bright H, filaments in M87 appear in the downstream region of the <3 Myr old shock front, at smaller radii than ,0.6 arcmin. We suggest that shocks induce shearing around the filaments, thereby promoting mixing of the cold gas with the ambient hot intra-cluster medium (ICM) via instabilities. By bringing hot thermal particles into contact with the cool, line-emitting gas, mixing can supply the power and ionizing particles needed to explain the observed optical spectra. Furthermore, mixing of the coolest X-ray emitting plasma with the cold optical line-emitting filamentary gas promotes efficient conduction between the two phases, allowing non-radiative cooling which could explain the lack of X-ray gas with temperatures under 0.5 keV. [source]


    An unbiased pilot survey for Galactic water masers

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
    J. L. Caswell
    ABSTRACT The Australia Telescope Compact Array has been used in a fast surveying mode to study the 22-GHz transition of water in two small sample regions of the southern Galactic plane. The observations allow an unbiased search for water masers, including any that may have no association with masers from other molecules (or indeed, no association with any other detectable celestial object). Positions with arcsecond accuracy were obtained from the original survey data for detected sources, and these were re-observed at an epoch more than two years later. Variability of the spectra between the epochs was considerable: our total of 32 masers comprises 24 detected at both epochs, two detected at only the first epoch and six detected at only the follow-up epoch. The success of our surveying mode shows it to be a practical strategy for the difficult task of extending unbiased water maser surveys to a large portion of the Galactic plane. Our results show quantitatively the effect of variability on the completeness of surveys conducted at a single epoch. Most of our maser detections are new discoveries. Only four had previously been detected (in searches towards interesting targets in the survey area). The high density of water masers from our unbiased survey supports earlier suggestions that they are the most populous maser species, and one of the most sensitive and reliable tracers of massive young stellar objects , newly forming massive young stars. The spectra of nine masers show high-velocity emission, and they show a striking preponderance of blueshifted high-velocity features. This is compatible with such blueshifts being a characteristic of populations dominated by masers at the earliest evolutionary stage of star formation, in some cases prior to the onset of methanol masers. Amongst the high-velocity emission sources there are two new examples where blueshifted high-velocity outflows dominate the total emission; these substantially increase the previously known meagre population of five such objects and suggest that they may be surprisingly abundant. [source]


    The extraordinary radio galaxy MRC B1221,423: probing deeper at radio and optical wavelengths

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2010
    Helen M. Johnston
    ABSTRACT We present optical spectra and high-resolution multiwavelength radio observations of the compact steep-spectrum radio source MRC B1221,423 (z= 0.1706). MRC B1221,423 is a very young (,105 yr), powerful radio source which is undergoing a tidal interaction with a companion galaxy. We find strong evidence of interaction between the active galactic nucleus (AGN) and its environment. The radio morphology is highly distorted, showing a dramatic interaction between the radio jet and the host galaxy, with the jet being turned almost back on itself. H i observations show strong absorption against the nucleus at an infall velocity of ,250 km s,1 compared to the stellar velocity, as well as a second, broader component which may represent gas falling into the nucleus. Optical spectra show that star formation is taking place across the whole system. Broad optical emission lines in the nucleus show evidence of outflow. Our observations confirm that MRC B1221,423 is a young radio source in a gas-rich nuclear environment, and that there was a time delay of a few times 100 Myr between the onset of star formation and the triggering of the AGN. [source]


    A study of the massive star-forming region M8 using images from the Spitzer Infrared Array Camera

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2010
    Dewangan Lokesh Kumar
    ABSTRACT We present photometry and images (3.6, 4.5, 5.8 and 8.0 ,m) from the Spitzer Infrared Array Camera (IRAC) of the star-forming region Messier 8 (M8). The IRAC photometry reveals ongoing star formation in the M8 complex, with 64 class 0/I and 168 class II sources identified in several locations in the vicinity of submm gas cores/clumps. Nearly 60 per cent of these young stellar objects (YSOs) occur in about seven small clusters. The spatial surface density of the clustered YSOs is determined to be about 10,20 YSOs pc,2. Fresh star formation by the process of ,collect and collapse' might have been triggered by the expanding H ii regions and winds from massive stars. IRAC ratio images are generated and studied in order to identify possible diagnostic emission regions in M8. The image of 4.5/8.0 ,m reveals a Br, counterpart of the optical Hourglass H ii region, while the ratio 8.0/4.5 ,m indicates PAH emission in a cavity-like structure to the east of the Hourglass. The ratio maps of 3.6/4.5, 5.8/4.5 and 8.0/4.5 ,m seem to identify PAH emission regions in the sharp ridges and filamentary structures seen east to west and north-east to south-west in the M8 complex. [source]


    Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star cluster

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
    M. Schartmann
    ABSTRACT Recently, high-resolution observations with the help of the near-infrared adaptive optics integral field spectrograph Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) at the Very Large Telescope proved the existence of massive and young nuclear star clusters in the centres of a sample of Seyfert galaxies. With the help of three-dimensional high-resolution hydrodynamical simulations with the Pluto code, we follow the evolution of such clusters, especially focusing on stellar mass loss feeding gas into the ambient interstellar medium and driving turbulence. This leads to a vertically wide distributed clumpy or filamentary inflow of gas on large scales (tens of parsec), whereas a turbulent and very dense disc builds up on the parsec scale. In order to capture the relevant physics in the inner region, we treat this disc separately by viscously evolving the radial surface density distribution. This enables us to link the tens of parsec-scale region (accessible via SINFONI observations) to the (sub-)parsec-scale region (observable with the mid-infrared interferometer instrument and via water maser emission). Thereby, this procedure provides us with an ideal testbed for data comparison. In this work, we concentrate on the effects of a parametrized turbulent viscosity to generate angular momentum and mass transfer in the disc and additionally take star formation into account. Most of the input parameters are constrained by available observations of the nearby Seyfert 2 galaxy NGC 1068, and we discuss parameter studies for the free parameters. At the current age of its nuclear starburst of 250 Myr, our simulations yield disc sizes of the order of 0.8,0.9 pc, gas masses of 106 M, and mass transfer rates of 0.025 M, yr,1 through the inner rim of the disc. This shows that our large-scale torus model is able to approximately account for the disc size as inferred from interferometric observations in the mid-infrared and compares well to the extent and mass of a rotating disc structure as inferred from water maser observations. Several other observational constraints are discussed as well. [source]


    Enhanced star formation in narrow-line Seyfert 1 active galactic nuclei revealed by Spitzer

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2010
    E. Sani
    ABSTRACT We present new low-resolution Spitzer mid-infrared spectroscopy of a sample of 20 ROSAT -selected local narrow-line Seyfert 1 galaxies (NLS1s). We detect strong active galactic nucleus (AGN) continuum in all and clear polycyclic aromatic hydrocarbon (PAH) emission in 70 per cent of the sources. The 6.2 ,m PAH luminosity spans three orders of magnitude, from ,1039 to ,1042 erg s,1, providing strong evidence for intense ongoing star formation in the circumnuclear regions of these sources. Using the Infrared Spectrograph/Spitzer archive, we gathered a large number of additional NLS1s and their broad-line counterparts (BLS1s) and constructed NLS1 and BLS1 subsamples to compare them in various ways. The comparison shows a clear separation according to full width at half-maximum (H,) [FWHM(H,)] such that objects with narrower broad H, lines are the strongest PAH emitters. We test this division in various ways trying to remove biases due to luminosity and aperture size. Specifically, we find that star formation activity around NLS1 AGN is larger than around BLS1 of the same AGN luminosity. The above result seems to hold over the entire range of distance and luminosity. Moreover, the star formation rate is higher in low black hole mass and high L/LEdd systems indicating that black hole growth and star formation are occurring simultaneously. [source]


    A method for reconstructing the variance of a 3D physical field from 2D observations: application to turbulence in the interstellar medium

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2010
    C. M. Brunt
    ABSTRACT We introduce and test an expression for calculating the variance of a physical field in three dimensions using only information contained in the two-dimensional projection of the field. The method is general but assumes statistical isotropy. To test the method we apply it to numerical simulations of hydrodynamic and magnetohydrodynamic turbulence in molecular clouds, and demonstrate that it can recover the three-dimensional (3D) normalized density variance with ,10 per cent accuracy if the assumption of isotropy is valid. We show that the assumption of isotropy breaks down at low sonic Mach number if the turbulence is sub-Alfvénic. Theoretical predictions suggest that the 3D density variance should increase proportionally to the square of the Mach number of the turbulence. Application of our method will allow this prediction to be tested observationally and therefore constrain a large body of analytic models of star formation that rely on it. [source]


    Red star-forming and blue passive galaxies in clusters

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009
    Smriti Mahajan
    ABSTRACT We explore the relation between colour (measured from photometry) and specific star formation rate (derived from optical spectra obtained by the Sloan Digital Sky Survey Data Release 4) of over 6000 galaxies (Mr,,20.5) in and around (<3 r200) low-redshift (z < 0.12) Abell clusters. Even though, as expected, most red sequence galaxies have little or no ongoing star formation, and most blue galaxies are currently forming stars, there are significant populations of red star-forming and blue passive galaxies. This paper examines various properties of galaxies belonging to the latter two categories, to understand why they deviate from the norm. These properties include morphological parameters, internal extinction, spectral features such as EW(H,) and the 4000 Ĺ break, and metallicity. Our analysis shows that the blue passive galaxies have properties very similar to their star-forming counterparts, except that their large range in H, equivalent width indicates recent truncation of star formation. The red star-forming galaxies fall into two broad categories, one of them being massive galaxies in cluster cores dominated by an old stellar population, but with evidence of current star formation in the core (possibly linked with active galactic nuclei). For the remaining red star-forming galaxies, it is evident from spectral indices, stellar and gas-phase metallicities and mean stellar ages that their colours result from the predominance of a metal-rich stellar population. Only half of the red star-forming galaxies have extinction values consistent with a significant presence of dust. The implication of the properties of these star-forming galaxies on environmental studies, like that of the Butcher,Oemler effect, is discussed. [source]


    On the interstellar medium and star formation demographics of galaxies in the local universe

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2009
    Matthew S. Bothwell
    ABSTRACT We present a demographic analysis of integrated star formation and gas properties for a sample of galaxies representative of the overall population at z, 0. This research was undertaken in order to characterize the nature of star formation and interstellar medium (ISM) behaviour in the local Universe, and test the extent to which global star formation rates (SFRs) can be seen as dependent on the interstellar gas content. Archival 21-cm derived H i data are compiled from the literature, and are combined with CO (J =1 , 0) derived H2 masses to calculate and characterize the total gas content for a large sample of local galaxies. The distribution in stellar mass-normalized H i content is found to exhibit the noted characteristic transition at stellar masses of ,3 × 1010 M,, turning off towards low values, but no such transition is observed in the equivalent distribution of molecular gas. H, based SFRs and specific star formation rates (SSFRs) are also compiled for a large (1110) sample of local galaxies. We confirm two transitions as found in previous work: a turnover towards low SFRs at high luminosities, indicative of the quenching of SF characteristic of the red sequence; and a broadening of the SF distribution in low-luminosity dwarf galaxies, again to extremely low SFRs of <10,3 M, yr,1. However, a new finding is that while the upper luminosity transition is mirrored by the turnover in H i content, suggesting that the low SFRs of the red sequence result from a lack of available gas supply, the transition towards a large spread of SFRs in the least luminous dwarf galaxies is not matched by a prominent increase in scatter in gas content. Possible mass-dependent quenching mechanisms are discussed, along with speculations that in low-mass galaxies, the H, luminosity may not faithfully trace the SFR. [source]


    Formation and evolution of dwarf elliptical galaxies , II.

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2009
    Spatially resolved star formation histories
    ABSTRACT We present optical Very Large Telescope spectroscopy of 16 dwarf elliptical galaxies (dEs) comparable in mass to NGC 205, and belonging to the Fornax cluster and to nearby groups of galaxies. Using full-spectrum fitting, we derive radial profiles of the SSP-equivalent ages and metallicities. We make a detailed analysis with ulyss and steckmap of the star formation history in the core of the galaxies and in an aperture of one effective radius. We resolved the history into one to four epochs. The statistical significance of these reconstructions was carefully tested; the two programs give remarkably consistent results. The old stellar population of the dEs, which dominates their mass, is likely coeval with that of massive ellipticals or bulges, but the star formation efficiency is lower. Important intermediate age (1,5 Gyr) populations and frequently tails of star formation until recent times are detected. These histories are reminiscent of their lower mass dwarf spheroidal counterparts of the Local Group. Most galaxies (10/16) show significant metallicity gradients, with metallicity declining by 0.5 dex over one half-light radius on average. These gradients are already present in the old population. The flattened (or discy), rotating objects (6/16) have flat metallicity profiles. This may be consistent with a distinct origin for these galaxies or it may be due to their geometry. The central single stellar population equivalent age varies between 1 and 6 Gyr, with the age slowly increasing with radius in the vast majority of objects. The group and cluster galaxies have similar radial gradients and star formation histories. The strong and old metallicity gradients place important constraints on the possible formation scenarios of dEs. Numerical simulations of the formation of spherical low-mass galaxies reproduce these gradients, but they require a longer time for them to build up. A gentle depletion of the gas, by ram pressure stripping or starvation, could drive the gas-rich, star-forming progenitors to the present dEs. [source]


    The disc-dominated host galaxy of FR-I radio source B2 0722+30

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
    B. H. C. Emonts
    ABSTRACT We present new observational results that conclude that the nearby radio galaxy B2 0722+30 is one of the very few known disc galaxies in the low-redshift Universe that host a classical double-lobed radio source. In this paper, we use H i observations, deep optical imaging, stellar population synthesis modelling and emission-line diagnostics to study the host galaxy, classify the active galactic nucleus (AGN) and investigate environmental properties under which a radio-loud AGN can occur in this system. Typical for spiral galaxies, B2 0722+30 has a regularly rotating gaseous disc throughout which star formation occurs. Dust heating by the ongoing star formation is likely responsible for the high infrared luminosity of the system. The optical emission-line properties of the central region identify a Low Ionization Nuclear Emission-line Region (LINER)-type nucleus with a relatively low [O iii] luminosity, in particular when compared with the total power of the Fanaroff & Riley type-I radio source that is present in this system. This classifies B2 0722+30 as a classical radio galaxy rather than a typical Seyfert galaxy. The environment of B2 0722+30 is extremely H i -rich, with several nearby interacting galaxies. We argue that a gas-rich interaction involving B2 0722+30 is a likely cause for the triggering of the radio AGN and/or the fact that the radio source managed to escape the optical boundaries of the host galaxy. [source]


    A semi-empirical model of the infrared emission from galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2008
    D. C. Ford
    ABSTRACT We present a semi-empirical model for the infrared emission of dust around star-forming sites in galaxies. Our approach combines a simple model of radiative transfer in dust clouds with a state-of-the-art model of the microscopic optical properties of dust grains pioneered by Draine & Li. In combination with the starburst99 stellar spectral synthesis package, this framework is able to produce synthetic spectra for galaxies which extend from the Lyman limit through to the far-infrared. We use it to probe how model galaxy spectra depend on the physical characteristics of their dust grain populations, and on the energy sources which heat that dust. We compare the predictions of our model with the 8- and 24-,m luminosities of sources in the Spitzer First Look Survey, and conclude by using the models to analyse the relative merits of various colour diagnostics in distinguishing systems out to a redshift of 2 with ongoing star formation from those with only old stellar populations. [source]


    The evolution of the galaxy red sequence in simulated clusters and groups

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    A. D. Romeo
    ABSTRACT N -body/hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a , cold dark matter (,CDM) cosmology are used in order to follow the building-up of the colour,magnitude relation in two clusters and in 12 groups. We have found that galaxies, starting from the more massive, move to the red sequence (RS) as they get aged over times and eventually set upon a ,dead sequence' (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However, galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z, 1, after which major events only involve the brightest cluster galaxies. The emerging scenario is that the evolution of the colour,magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter haloes assembly. Galaxies progressively quenching their star formation settle to a very sharp ,red and dead' sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z, 1.5) and environment. Differently from the DS, the operatively defined RS evolves more evidently with z, the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star-forming one: this goes from z, 1 in clusters down to 0.4 in normal groups. [source]


    Exploring star formation using the filaments in the Sloan Digital Sky Survey Data Release Five

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
    Biswajit Pandey
    ABSTRACT We have quantified the average filamentarity of the galaxy distribution in seven nearly two-dimensional strips from the Sloan Digital Sky Survey Data Release Five (SDSS DR5) using a volume-limited sample in the absolute magnitude range ,21 ,Mr,,20. The average filamentarity of star-forming (SF) galaxies, which are predominantly blue, is found to be more than that of other galaxies which are predominantly red. This difference is possibly an outcome of the fact that blue galaxies have a more filamentary distribution. Comparing the SF galaxies with only the other blue galaxies, we find that the two show nearly equal filamentarity. Separately analyzing the galaxies with high star formation rates (SFR) and low SFR, we find that the latter has a more filamentary distribution. We interpret this in terms of two effects. (i) A correlation between the SFR and individual galaxy properties like luminosity with the high-SFR galaxies being more luminous. (ii) A relation between the SFR and environmental effects like the density with the high-SFR galaxies preferentially occurring in high-density regions. These two effects are possibly not independent and are operating simultaneously. We do not find any difference in the filamentarity of SF galaxies and active galactic nuclei. [source]


    Is AGN feedback necessary to form red elliptical galaxies?

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    A. Khalatyan
    ABSTRACT We have used the smoothed particle hydrodynamics (SPH) code gadget-2 to simulate the formation of an elliptical galaxy in a group-size cosmological dark matter halo with mass Mhalo, 3 × 1012 h,1 M, at z= 0. The use of a stellar population synthesis model has allowed us to compute magnitudes, colours and surface brightness profiles. We have included a model to follow the growth of a central black hole and we have compared the results of simulations with and without feedback from active galactic nuclei (AGN). We have studied the interplay between cold gas accretion and merging in the development of galactic morphologies, the link between colour and morphology evolution, the effect of AGN feedback on the photometry of early-type galaxies, the redshift evolution in the properties of quasar hosts, and the impact of AGN winds on the chemical enrichment of the intergalactic medium (IGM). We have found that the early phases of galaxy formation are driven by the accretion of cold filamentary flows, which form a disc galaxy at the centre of the dark matter halo. Disc star formation rates in this mode of galaxy growth are about as high as the peak star formation rates attained at a later epoch in galaxy mergers. When the dark matter halo is sufficiently massive to support the propagation of a stable shock, the gas in the filaments is heated to the virial temperature, cold accretion is shut down, and the star formation rate begins to decline. Mergers transform the spiral galaxy into an elliptical one, but they also reactivate star formation by bringing gas into the galaxy. Without a mechanism that removes gas from the merger remnants, the galaxy ends up with blue colours, which are atypical for its elliptical morphology. We have demonstrated that AGN feedback can solve this problem even with a fairly low heating efficiency. Our simulations support a picture where AGN feedback is important for quenching star formation in the remnant of wet mergers and for moving them to the red sequence. This picture is consistent with recent observational results, which suggest that AGN hosts are galaxies in migration from the blue cloud to the red sequence on the colour,magnitude diagram. However, we have also seen a transition in the properties of AGN hosts from blue and star forming at z, 2 to mainly red and dead at z, 0. Ongoing merging is the primary but not the only triggering mechanism for luminous AGN activity. Quenching by AGN is only effective after the cold filaments have dried out, since otherwise the galaxy is constantly replenished with gas. AGN feedback also contributes to raising the entropy of the hot IGM by removing low-entropy tails vulnerable to developing cooling flows. We have also demonstrated that AGN winds are potentially important for the metal enrichment of the IGM a high redshift. [source]


    Bulges versus discs: the evolution of angular momentum in cosmological simulations of galaxy formation

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    Jesus Zavala
    ABSTRACT We investigate the evolution of angular momentum in simulations of galaxy formation in a cold dark matter universe. We analyse two model galaxies generated in the N -body/hydrodynamic simulations of Okamoto et al. Starting from identical initial conditions, but using different assumptions for the baryonic physics, one of the simulations produced a bulge-dominated galaxy and the other one a disc-dominated galaxy. The main difference is the treatment of star formation and feedback, both of which were designed to be more efficient in the disc-dominated object. We find that the specific angular momentum of the disc-dominated galaxy tracks the evolution of the angular momentum of the dark matter halo very closely: the angular momentum grows as predicted by linear theory until the epoch of maximum expansion and remains constant thereafter. By contrast, the evolution of the angular momentum of the bulge-dominated galaxy resembles that of the central, most bound halo material: it also grows at first according to linear theory, but 90 per cent of it is rapidly lost as pre-galactic fragments, into which gas had cooled efficiently, merge, transferring their orbital angular momentum to the outer halo by tidal effects. The disc-dominated galaxy avoids this fate because the strong feedback reheats the gas, which accumulates in an extended hot reservoir and only begins to cool once the merging activity has subsided. Our analysis lends strong support to the classical theory of disc formation whereby tidally torqued gas is accreted into the centre of the halo conserving its angular momentum. [source]


    The impact of radio feedback from active galactic nuclei in cosmological simulations: formation of disc galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    Takashi Okamoto
    ABSTRACT In this paper, we present a new implementation of feedback due to active galactic nuclei (AGN) in cosmological simulations of galaxy formation. We assume that a fraction of jet energy, which is generated by an AGN, is transferred to the surrounding gas as thermal energy. Combining a theoretical model of mass accretion on to black holes with a multiphase description of star-forming gas, we self-consistently follow evolution of both galaxies and their central black holes. The novelty in our model is that we consider two distinct accretion modes: standard radiatively efficient thin accretion discs and radiatively inefficient accretion flows which we will generically refer to as RIAFs; motivated by theoretical models for jet production in accretion discs, we assume that only the RIAF is responsible for the AGN feedback. The focus of this paper is to investigate the interplay between galaxies and their central black holes during the formation of a disc galaxy. We find that, after an initial episode of bursting star formation, the accretion rate on to the central black hole drops so that the accretion disc switches to a RIAF structure. At this point, the feedback from the AGN becomes efficient and slightly suppresses star formation in the galactic disc and almost completely halts star formation in the bulge. This suppression of the star formation regulates mass accretion on to the black hole and associated AGN feedback. As a result, the nucleus becomes a stochastically fuelled low-luminosity AGN (Seyfert galaxy) with recurrent short-lived episodes of activity after the star bursts. During the ,on' events, the AGN produces reasonably powerful jets (radio-loud state) and is less luminous than the host galaxy, while in the ,off' phase, the nucleus is inactive and ,radio quiet'. Our model predicts several properties of the low-luminosity AGN including the bolometric luminosity, jet powers, the effect on kpc scale of the radio jet and the AGN lifetime, which are in broad agreement with observations of Seyfert galaxies and their radio activity. We also find that the ratios between the central black hole mass and the mass of the host spheroid at z= 0 are ,10,3 regardless of the strength of either supernova feedback or AGN feedback because the radiation drag model directly relates the star formation activity in the Galactic Centre and the mass accretion rate on to the central black hole. [source]


    Galaxy growth in the concordance ,CDM cosmology

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    Q. Guo
    ABSTRACT We use galaxy and dark halo data from the public database for the Millennium Simulation to study the growth of galaxies in the De Lucia et al. model for galaxy formation. Previous work has shown this model to reproduce many aspects of the systematic properties and the clustering of real galaxies, both in the nearby universe and at high redshift. It assumes the stellar masses of galaxies to increase through three processes, major mergers, the accretion of smaller satellite systems and star formation. We show the relative importance of these three modes to be a strong function of stellar mass and redshift. Galaxy growth through major mergers depends strongly on stellar mass, but only weakly on redshift. Except for massive systems, minor mergers contribute more to galaxy growth than major mergers at all redshifts and stellar masses. For galaxies significantly less massive than the Milky Way, star formation dominates the growth at all epochs. For galaxies significantly more massive than the Milky Way, growth through mergers is the dominant process at all epochs. At a stellar mass of 6 × 1010 M,, about that of the Milk Way, star formation dominates at z > 1 and mergers at later times. At every stellar mass, the growth rates through star formation increase rapidly with increasing redshift. Specific star formation rates are the decreasing function of stellar mass not only at z= 0 but also at all higher redshifts. For comparison, we carry out a similar analysis of the growth of dark matter haloes. In contrast to the galaxies, growth rates depend strongly on redshift, but only weakly on mass. They agree qualitatively with analytic predictions for halo growth. [source]


    Stellar contents and star formation in the young star cluster Be 59

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2008
    A. K. Pandey
    ABSTRACT We present UBV Ic CCD photometry of the young open cluster Be 59 with the aim to study the star formation scenario in the cluster. The radial extent of the cluster is found to be ,10 arcmin (2.9 pc). The interstellar extinction in the cluster region varies between E(B,V) , 1.4 to 1.8 mag. The ratio of total-to-selective extinction in the cluster region is estimated as 3.7 ± 0.3. The distance of the cluster is found to be 1.00 ± 0.05 kpc. Using near-infrared (NIR) colours and slitless spectroscopy, we have identified young stellar objects (YSOs) in the open cluster Be 59 region. The ages of these YSOs range between <1 and ,2 Myr, whereas the mean age of the massive stars in the cluster region is found to be ,2 Myr. There is evidence for second-generation star formation outside the boundary of the cluster, which may be triggered by massive stars in the cluster. The slope of the initial mass function, ,, in the mass range 2.5 < M/M,, 28 is found to be ,1.01 ± 0.11 which is shallower than the Salpeter value (,1.35), whereas in the mass range 1.5 < M/M,, 2.5 the slope is almost flat. The slope of the K -band luminosity function is estimated as 0.27 ± 0.02, which is smaller than the average value (,0.4) reported for young embedded clusters. Approximately 32 per cent of H, emission stars of Be 59 exhibit NIR excess indicating that inner discs of the T Tauri star (TTS) population have not dissipated. The Midcourse Space Experiment (MSX) and IRAS-HIRES images around the cluster region are also used to study the emission from unidentified infrared bands and to estimate the spatial distribution of optical depth of warm and cold interstellar dust. [source]


    Reionization bias in high-redshift quasar near-zones

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
    J. Stuart B. Wyithe
    ABSTRACT Absorption spectra of high-redshift quasars exhibit an increasingly thick Ly, forest, suggesting that the fraction of neutral hydrogen in the intergalactic medium (IGM) is increasing towards z, 6. However, the interpretation of these spectra is complicated by the fact that the Ly, optical depth is already large for neutral hydrogen fractions in excess of 10,4, and also because quasars are expected to reside in dense regions of the IGM. We present a model for the evolution of the ionization state of the IGM which is applicable to the dense, biased regions around high-redshift quasars as well as more typical regions in the IGM. We employ a cold dark matter based model in which the ionizing photons for reionization are produced by star formation in dark matter haloes spanning a wide range of masses, combined with numerical radiative transfer simulations which model the resulting opacity distribution in quasar absorption spectra. With an appropriate choice for the parameter which controls the star formation efficiency, our model is able to simultaneously reproduce the observed Ly, forest opacity at 4 < z < 6, the ionizing photon mean-free-path at z, 4 and the rapid evolution of highly ionized near-zone sizes around high-redshift quasars at 5.8 < z < 6.4. In our model, reionization extends over a wide redshift range, starting at z, 10 and completing as H ii regions overlap at z, 6,7. We find that within 5 physical Mpc of a high-redshift quasar, the evolution of the ionization state of the IGM precedes that in more typical regions by around 0.3 redshift units. More importantly, when combined with the rapid increase in the ionizing photon mean-free-path expected shortly after overlap, this offset results in an ionizing background near the quasar which exceeds the value in the rest of the IGM by a factor of ,2,3. We further find that in the post-overlap phase of reionization the size of the observed quasar near-zones is not directly sensitive to the neutral hydrogen fraction of the IGM. Instead, these sizes probe the level of the background ionization rate and the temperature of the surrounding IGM. The observed rapid evolution of the quasar near-zone sizes at 5.8 < z < 6.4 can thus be explained by the rapid evolution of the ionizing background, which in our model is caused by the completion of overlap at the end of reionization by 6 ,z, 7. [source]


    Life in the last lane: star formation and chemical evolution in an extremely gas rich dwarf

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
    Ayesha Begum
    ABSTRACT We present an analysis of H i, H, and oxygen abundance data for NGC 3741. This galaxy has a very extended gas disc (,8.8 times the Holmberg radius), and a dark-to-luminous (i.e. stellar) mass ratio of ,149, which makes it one of the ,darkest' dwarf irregular galaxies known. However, its ratio of baryon (i.e. gas + stellar) mass to dark mass is typical of that in galaxies. Our new high-resolution H i images of the galaxy show evidence for a large-scale (purely gaseous) spiral arm and central bar. From our H i data, a rotation curve can be derived out to ,37,44 disc scalelengths in the J and B bands, respectively. This is just slightly short of the radius at which one would expect a Navarro,Frenk,White type rotation curve to start falling. The galaxy has an integrated star formation rate (SFR) of ,0.0034 M, yr,1, while the average SFR within the optical disc is ,0.0049 M, yr,1 kpc,2. Despite the gaseous spiral feature and the ongoing star formation, we find that the global gas density in NGC 3741 is significantly lower than the Toomre instability criterion. This is consistent with the behaviour seen in other dwarf galaxies. We also find that the SFR is consistent with that expected from the observed correlations between H i mass and SFR and the global Kennicutt,Schmidt law, respectively. We measure the oxygen abundance to be 12 + log(O/H) = 7.66 ± 0.10, which is consistent with that expected from the metallicity,luminosity relation, despite its extreme gas mass ratio. We also examine the issue of chemical evolution of NGC 3741 in the context of the closed-box model of chemical evolution. The effective oxygen yield of NGC 3741 is consistent with recent model estimates of closed-box yields, provided one assumes that the gas has been efficiently mixed all the way to the edge of the H i disc (i.e. greater than eight times the optical radius). This seems a priori unlikely. On the other hand, using a sample of galaxies with both interferometric H i maps and chemical abundance measurements, we find that the effective yield is anticorrelated with the total dynamical mass, as expected in leaky box models. [source]


    The UV properties of E+A galaxies: constraints on feedback-driven quenching of star formation

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2007
    S. Kaviraj
    ABSTRACT We present the first large-scale study of E+A galaxies that incorporates photometry in the ultraviolet (UV) wavelengths. E+A galaxies are ,post-starburst' systems, with strong Balmer absorption lines indicating significant recent star formation, but without [O ii] and H, emission lines which are characteristic of ongoing star formation. The starburst that creates the E+A galaxy typically takes place within the last Gyr and creates a high fraction (20,60 per cent) of the stellar mass in the remnant over a short time-scale (<0.1 Gyr). We find a tight correlation between the luminosity of our E+A galaxies and the implied star formation rate (SFR) during the starburst. While low-luminosity E+As [M(z) > ,20] exhibit implied SFRs of less than 50 M, yr,1, their luminous counterparts [M(z) < ,22] show SFRs greater than 300 and as high as 2000 M, yr,1, suggesting that luminous and ultra-luminous infrared galaxies in the low-redshift Universe could be the progenitors of massive nearby E+A galaxies. We perform a comprehensive study of the characteristics of the quenching that truncates the starburst in E+A systems. We find that, for galaxies less massive than 1010 M,, the quenching efficiency decreases as the galaxy mass increases. However, for galaxies more massive than 1010 M,, this trend is reversed and the quenching efficiency increases with galaxy mass. Noting that the mass threshold at which this reversal occurs is in excellent agreement with the mass above which active galactic nuclei (AGN) become significantly more abundant in nearby galaxies, we use simple energetic arguments to show that the bimodal behaviour of the quenching efficiency is consistent with AGN and supernovae (SN) being the principal sources of negative feedback above and below M, 1010 M,, respectively. The arguments assume that quenching occurs through the mechanical ejection or dispersal of the gas reservoir and that, in the high-mass regime (M > 1010 M,), the Eddington ratios in this sample of galaxies scale as M,, where 1 < , < 3. Finally, we use our E+A sample to estimate the time it takes for galaxies to migrate from the blue cloud to the red sequence. We find migration times between 1 and 5 Gyr, with a median value of 1.5 Gyr. [source]


    On the morphologies, gas fractions, and star formation rates of small galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2007
    Tobias Kaufmann
    ABSTRACT We use a series of N -body/smoothed particle hydrodynamics simulations and analytic arguments to show that the presence of an effective temperature floor in the interstellar medium at TF, 104 K naturally explains the tendency for low-mass galaxies to be more spheroidal, more gas rich, and less efficient in converting baryons into stars than larger galaxies. The trend arises because gas pressure support becomes important compared to angular momentum support in small dark matter haloes. We suggest that dwarf galaxies with rotational velocities , 40 km s,1 do not originate as thin discs, but rather are born as thick, puffy systems. If accreted on to larger haloes, tenuous dwarfs of this kind will be more susceptible to gas loss or tidal transformation than scaled-down versions of larger spirals. For a constant temperature floor, pressure support becomes less important in large haloes, and this produces a tendency for massive isolated galaxies to have thinner discs and more efficient star formation than their less-massive counterparts, as observed. [source]


    Variations in 24-,m morphologies among galaxies in the Spitzer Infrared Nearby Galaxies Survey: new insights into the Hubble sequence

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
    G. J. Bendo
    ABSTRACT To study the distribution of star formation and dust emission within nearby galaxies, we measured five morphological parameters in the 3.6- and 24-,m wavebands for 65 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS) and eight galaxies that were serendipitously observed by SINGS. The morphological parameters demonstrate strong variations along the Hubble sequence, including statistically significant differences between S0/a-Sab and Sc-Sd galaxies. Early-type galaxies are generally found to be compact, centralized, symmetric sources in the 24-,m band, while late-type galaxies are generally found to be extended, asymmetric sources. These results suggest that the processes that increase the real or apparent sizes of galaxies' bulges also lead to more centralized 24-,m dust emission. Several phenomena, such as strong nuclear star formation, Seyfert activity, or outer ring structures, may cause galaxies to deviate from the general morphological trends observed at 24 ,m. We also note that the 24-,m morphologies of Sdm-Im galaxies are quite varied, with some objects appearing very compact and symmetric but others appearing diffuse and asymmetric. These variations reflect the wide variation in star formation in irregular galaxies as observed at other wavelengths. The variations in the 24-,m morphological parameters across the Hubble sequence mirror many of the morphological trends seen in other tracers of the ISM and in stellar emission. However, the 24-,m morphological parameters for the galaxies in this sample do not match the morphological parameters measured in the stellar wavebands. This implies that the distribution of dust emission is related to but not equivalent to the distribution of stellar emission. [source]


    A census of the Carina Nebula , II.

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
    Energy budget, global properties of the nebulosity
    ABSTRACT The first paper in this series took a direct census of energy input from the known OB stars in the Carina Nebula, and in this paper we study the global properties of the surrounding nebulosity. This detailed comparison may prove useful for interpreting observations of extragalactic giant H ii regions and ultraluminous infrared (IR) galaxies. We find that the total IR luminosity of Carina is about 1.2 × 107 L,, accounting for only about 50,60 per cent of the known stellar luminosity from Paper I. Similarly, the ionizing photon luminosity derived from the integrated radio continuum is about 7 × 1050 s,1, accounting for ,75 per cent of the expected Lyman continuum from known OB stars. The total kinetic energy of the nebula is about 8 × 1051 erg, or ,30 per cent of the mechanical energy from stellar winds over the lifetime of the nebula, so there is no need to invoke a supernova (SN) explosion based on energetics. Warm dust grains residing in the H ii region interior dominate emission at 10,30 ,m, but cooler grains at 30,40 K dominate the IR luminosity and indicate a likely gas mass of ,106 M,. We find an excellent correlation between the radio continuum and 20,25 ,m emission, consistent with the idea that the ,80-K grain population is heated by trapped Ly, photons. Similarly, we find a near perfect correlation between the far-IR optical depth map of cool grains and 8.6-,m hydrocarbon emission, indicating that most of the nebular mass resides as atomic gas in photodissociation regions and not in dense molecular clouds. Synchronized star formation around the periphery of Carina provides a strong case that star formation here was indeed triggered by stellar winds and ultraviolet radiation. This second generation appears to involve a cascade toward preferentially intermediate- and low-mass stars, but this may soon change when , Carinae and its siblings explode. If the current reservoir of atomic and molecular gas can be tapped at that time, massive star formation may be rejuvenated around the periphery of Carina much as if it were a young version of Gould's Belt. Furthermore, when these multiple SNe occur, the triggered second generation will be pelted repeatedly with SN ejecta bearing short-lived radioactive nuclides. Carina may therefore represent the most observable analogue to the cradle of our own Solar system. [source]