Home About us Contact | |||
Structure Generation (structure + generation)
Selected AbstractsExhaustive Structure Generation for Inverse-QSPR/QSARMOLECULAR INFORMATICS, Issue 1-2 2010Tomoyuki Miyao Abstract Chemical structure generation based on quantitative structure property relationship (QSPR) or quantitative structure activity relationship (QSAR) models is one of the central themes in the field of computer-aided molecular design. The objective of structure generation is to find promising molecules, which according to statistical models, are considered to have desired properties. In this paper, a new method is proposed for the exhaustive generation of chemical structures based on inverse-QSPR/QSAR. In this method, QSPR/QSAR models are constructed by multiple linear regression method, and then the conditional distribution of explanatory variables given the desired properties is estimated by inverse analysis of the models using the framework of a linear Gaussian model. Finally, chemical structures are exhaustively generated by a sophisticated algorithm that is based on a canonical construction path method. The usefulness of the proposed method is demonstrated using a dataset of the boiling points of acyclic hydrocarbons containing up to 12 carbon atoms. The QSPR model was constructed with 600 hydrocarbons and their boiling points. Using the proposed method, chemical structures which had boiling points of 100, 150, or 200,°C were exhaustively generated. [source] Enhanced automated structure elucidation by inclusion of two-bond specific dataMAGNETIC RESONANCE IN CHEMISTRY, Issue 8 2010Steve F. Cheatham Abstract The availability of cryogenically cooled probes permits routine acquisition of data from low sensitivity pulse sequences such as inadequate and 1,1-adequate. We demonstrate that the use of cryo-probe generated 1,1-adequate data in conjunction with HMBC dramatically improves computer-assisted structure elucidation (CASE) both in terms of speed and accuracy of structure generation. In this study data were obtained on two dissimilar natural products and subjected to CASE analysis with and without the incorporation of two-bond specific data. Dramatic improvements in both structure calculation times and structure candidates were observed by the inclusion of the two-bond specific data. Copyright © 2010 John Wiley & Sons, Ltd. [source] Exhaustive Structure Generation for Inverse-QSPR/QSARMOLECULAR INFORMATICS, Issue 1-2 2010Tomoyuki Miyao Abstract Chemical structure generation based on quantitative structure property relationship (QSPR) or quantitative structure activity relationship (QSAR) models is one of the central themes in the field of computer-aided molecular design. The objective of structure generation is to find promising molecules, which according to statistical models, are considered to have desired properties. In this paper, a new method is proposed for the exhaustive generation of chemical structures based on inverse-QSPR/QSAR. In this method, QSPR/QSAR models are constructed by multiple linear regression method, and then the conditional distribution of explanatory variables given the desired properties is estimated by inverse analysis of the models using the framework of a linear Gaussian model. Finally, chemical structures are exhaustively generated by a sophisticated algorithm that is based on a canonical construction path method. The usefulness of the proposed method is demonstrated using a dataset of the boiling points of acyclic hydrocarbons containing up to 12 carbon atoms. The QSPR model was constructed with 600 hydrocarbons and their boiling points. Using the proposed method, chemical structures which had boiling points of 100, 150, or 200,°C were exhaustively generated. [source] |