Storm Flow (storm + flow)

Distribution by Scientific Domains


Selected Abstracts


Effects of Watershed Impervious Cover on Dissolved Silica Loading in Storm Flow,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2007
Socratis Loucaides
Abstract:, Dissolved silica (DSi) availability is a factor that affects the composition of algal populations in aquatic ecosystems. DSi cycling is tightly linked to the hydrological cycle, which is affected by human alterations of the landscape. Development activities that increase impervious cover change watershed hydrology and may increase the discharge of DSi-poor rainwater and decrease the discharge of DSi-rich ground water into aquatic ecosystems, possibly shifting algal community composition toward less desirable assemblages. In this study, DSi loadings from two adjacent coastal watersheds with different percent impervious cover were compared during four rain and five nonrain events. Loadings in the more impervious watershed contained a significantly larger proportion of surface runoff than base flow (ground-water discharge) and had lower [DSi] water during rain events than the less impervious watershed. Application of the Soil Conservation Service Curve Number (CN) method showed that the minimum rainfall height necessary to yield runoff was significantly lower for the more impervious watershed, implying that runoff volumes increase with impervious cover as well as the frequency of runoff-yielding events. Empirical data collected during this study and estimates derived from the CN method suggest that impervious cover may be responsible for both short-term DSi limitation during rain events as well as long-term reduction of DSi inputs into aquatic ecosystems. [source]


Directions of preferential flow in a hillslope soil, 1.

HYDROLOGICAL PROCESSES, Issue 4 2005
Quasi-steady flow
Abstract Preferred infiltration is mainly perceived as vertically down whereas subsurface storm flow is thought to occur parallel to slopes. The transition from vertical to lateral flow in a layered hillslope soil is the focus of the contribution. Transient flow is assumed to move as a wetting front. Three time-domain reflectometry (TDR) wave-guides, each 0·15 m long, were mounted in the shape of a truncated tetrahedron with its peak pointing down. Each wave-guide focuses the front velocity along its axis. The three front-velocity vectors are decomposed into their x, y and z components, which are then assembled to the resultant velocity vector. The volume density flux of preferred flow is the product of the front velocity and the mobile water content. The latter is the amplitude of transient soil moisture measured with each wave-guide. The resultant vector of the volume flux density is computed similarly to the velocity vector. The experimental approach allows for the rapid assessment of transient flows without relying on the variation of water potentials. The experiments indicate that the directions of the resultant vectors of velocity and volume flux density can be estimated if the moisture variations of the three TDR wave-guides are strongly correlated during the passing of the wetting front. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Runoff generation from logged and burnt convergent hillslopes: rainfall simulation and modelling

HYDROLOGICAL PROCESSES, Issue 5 2004
Patrick N. J. Lane
Abstract This paper reports results from field experiments and hydrological modelling on the dynamics of runoff generation in highly convergent parts of the landscape in a logged and burnt eucalypt forest in south-eastern Victoria, Australia. Large-scale rainfall simulation experiments were conducted to explore runoff generating mechanisms from harvested areas, and to assess the effectiveness of standard water quality protective measures, here a disturbed filter strip, in preventing accession of sediment to near-stream areas. We then examined the likely effects of varying antecedent moisture conditions on surface and subsurface runoff generating mechanisms. Very small volumes of surface runoff were generated only at very high rainfall intensity rates that exceeded a 100 year recurrence interval event during the simulated experiments. There was little or no identifiable impact of either compaction from logging operations or fire-induced hydrophobicity on surface infiltration or generation of surface runoff. Measured soil hydraulic properties and soil depths explained the paucity of surface runoff, and the dominance of subsurface storm flow as the prime runoff generating mechanism. Deep lateral subsurface flow was observed from the cut-face of a fire access track and into a streamhead downslope of the experimental plots. Water balance modelling using Topog_Dynamic indicated the conditions under which saturated overland flow in this environment could be generated are rare, but that care should be taken in siting of roads and tracks in lower parts of convergent landscapes. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Towards integrating tracer studies in conceptual rainfall-runoff models: recent insights from a sub-arctic catchment in the Cairngorm Mountains, Scotland

HYDROLOGICAL PROCESSES, Issue 2 2003
Chris Soulsby
Abstract Hydrochemical tracers (alkalinity and silica) were used in an end-member mixing analysis (EMMA) of runoff sources in the 10 km2 Allt a' Mharcaidh catchment. A three-component mixing model was used to separate the hydrograph and estimate, to a first approximation, the range of likely contributions of overland flow, shallow subsurface storm flow, and groundwater to the annual hydrograph. A conceptual, catchment-scale rainfall-runoff model (DIY) was also used to separate the annual hydrograph in an equivalent set of flow paths. The two approaches produced independent representations of catchment hydrology that exhibited reasonable agreement. This showed the dominance of overland flow in generating storm runoff and the important role of groundwater inputs throughout the hydrological year. Moreover, DIY was successfully adapted to simulate stream chemistry (alkalinity) at daily time steps. Sensitivity analysis showed that whilst a distinct groundwater source at the catchment scale could be identified, there was considerable uncertainty in differentiating between overland flow and subsurface storm flow in both the EMMA and DIY applications. Nevertheless, the study indicated that the complementary use of tracer analysis in EMMA can increase the confidence in conceptual model structure. However, conclusions are restricted to the specific spatial and temporal scales examined. Copyright © 2003 John Wiley & Sons, Ltd. [source]