Storm Events (storm + event)

Distribution by Scientific Domains


Selected Abstracts


A Statistical Sediment Yield Prediction Model Incorporating the Effect of Fires and Subsequent Storm Events,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2008
Jang Hyuk Pak
Abstract:, Alluvial fans are continuously being developed for residential, industrial, commercial, and agricultural uses in southern California. Development and alteration of alluvial fans need to consider the possibility of mud and debris flows from upstream mountain watersheds affected by fires. Accurate prediction of sediment yield (or hyper-concentrated sediment yield) is essential for the design, operation, and maintenance of debris basins to safeguard properly the general populace. This paper presents a model for the prediction of sediment yields that result from a combination of fire and subsequent storm events. The watersheds used in this analysis are located in the foothills of the San Gabriel Mountains in southern California. A multiple regression analysis is first utilized to establish a fundamental statistical relationship for sediment yield as a function of relief ratio, drainage area, maximum 1-h rainfall intensity and fire factor using 45 years of data (1938-1983). In addition, a method for multi-sequence sediment yield prediction under fire conditions was developed and calibrated using 17 years of sediment yield, fire, and precipitation data for the period 1984-2000. After calibration, this model was verified by applying it to provide a prediction of the sediment yields for the 2001-2002 fire events in southern California. The findings indicate a strong correlation between the estimated and measured sediment yields. The proposed method for sequence sediment yield prediction following fire events can be a useful tool to schedule cleanout operations for debris basins and to develop an emergency response strategy for the southern California region where plentiful sediment supplies exist and frequent fires occur. [source]


The impact of storm events on solute exports from a glaciated forested watershed in western New York, USA

HYDROLOGICAL PROCESSES, Issue 16 2006
S. P. Inamdar
Abstract This study analysed the importance of precipitation events from May 2003 to April 2004 on surface water chemistry and solute export from a 696 ha glaciated forested watershed in western New York State, USA. The specific objectives of the study were to determine: (a) the temporal patterns of solutes within individual storm events; (b) the impact of precipitation events on seasonal and annual export budgets; and (c) how solute concentrations and loads varied for precipitation events among seasons as functions of storm intensity and antecedent moisture conditions. Analysis of solute trajectories showed that NH4+, total Al and dissolved organic nitrogen (DON) peaked on the hydrograph rising limb, whereas dissolved organic carbon (DOC) concentrations peaked following the discharge peak. Sulphate and base-cations displayed a dilution pattern with a minimum around peak discharge. End-member mixing analysis showed that throughfall contributions were highest on the rising limb, whereas valley-bottom riparian waters peaked following the discharge peak. The trajectories of NO3, concentrations varied with season, indicating the influence of biotic processes on the generation, and hence flux, of this solute. Storm events had the greatest impact on the annual budgets for NH4+, K+, total dissolved Al, DON and DOC. Storm events during summer had the greatest impact on seasonal solute budgets. Summer events had the highest hourly discharges and high concentrations of solutes. However, NO3, and DOC exports during a spring snowmelt event were considerably more than those observed for large events during other periods of the year. Comparisons among storms showed that season, precipitation amount, and antecedent moisture conditions affected solute concentrations and loads. Concentrations of solutes were elevated for storms that occurred after dry antecedent conditions. Seven of the largest storms accounted for only 15% of the annual discharge, but were responsible for 34%, 19%, 64%, 13%, 39% and 24% of the annual exports of NH4+, K+, Al, NO3,, DON and DOC respectively. These results suggest that the intense and infrequent storms predicted for future climate-change scenarios will likely increase the exports of solutes like DOC, DON, NH4+, Al and K+ from watersheds. Copyright © 2006 John Wiley & Sons, Ltd. [source]


TEMPESTITE DEPOSITS ON A STORM-INFLUENCED CARBONATE RAMP: AN EXAMPLE FROM THE PABDEH FORMATION (PALEOGENE), ZAGROS BASIN, SW IRAN

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2004
H. Mohseni
The Pabdeh Formation is part of a thick carbonate-siliciclastic succession in the Zagros Basin of SW Iran which includes carbonate reservoirs of Cretaceous and Cenozoic ages. From field observations and petrographic and facies analysis of exposures in the type section of the Pabdeh Formation, four lithofacies were recognized. These are from oldest to youngest: (i) a mottled, bioturbated bioclastic wackestone/mudstone facies; (ii) a wackestone/packstone facies with horizontal burrows on bedding planes; (iii) a thin-bedded bioclastic wackestone/mudstone facies alternating with thin bioclastic-oolitic-intraclastic intervals; and (iv) a bioclastic foraminiferal / algal / peloidal packstone facies. These observations indicate that facies evolved upwards from deep outer-ramp deposits to inner-ramp deposits within a shoal complex, suggesting progradation of the ramp depositional system. Storm events significantly influenced the ramp system. Storm-generated surges transported sediments from nearshore to the deeper outer-ramp environment where they were deposited as shell-lags, composed mostly of bioclastic packstones, rich in pelagic microfauna with sharp, undulatory erosional basal contacts. The packstones rest on outer ramp mudstones deposited below storm base level. Sedimentary structures in the Pabdeh Formation are those typical of storm deposits, such as hummocky cross-stratification, ripple cross-lamination, ripple marks, escape burrows on the tops of the beds, couplets of fine- and coarse-grained laminae and mixed fauna, as well as intraclasts derived from underlying facies. These distinctive sequences are interpreted to have been generated by waning storm-generated currents. The dominance of fine-grained sediments (medium to fine sand); the lack of large- scale hummocky cross-stratification; the minor amounts of intraclasts derived from underlying facies; the paucity of amalgamated tempestite beds; and the finely-laminated (mm to cm scale) couplets of coarse and fine lamina all suggest a distal tempestite facies. Palaeogeographic reconstruction of the Zagros Basin during the Eocene indicates that the study area was situated in tropical, storm-dominated palaeolatitudes. [source]


Backshore coarsening processes triggered by wave-induced sand transport: the critical role of storm events,

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2010
Keiko Udo
Abstract Spatial backshore processes were investigated through field observations of topography and median sand grain size at a sandy beach facing the Pacific Ocean in Japan. A comparison of the backshore profile and cross-shore distribution of the median sand grain size in 1999 and 2004 revealed an unusual sedimentary process in which sand was coarsened in a depositional area in the 5-year period, although sediment is generally coarsened in erosional areas. In support of these observations, monthly spatial field analyses carried out in 2004 demonstrated a remarkable backshore coarsening process triggered by sedimentation in the seaward part of the backshore during a storm event. In order to elucidate mechanisms involved in the backshore coarsening process, thresholds of movable sand grain size under wave and wind actions (a uniform parameter for both these cases) in the onshore and offshore directions were estimated using wave, tide, and wind data. The cross-shore distributions of the estimated thresholds provided reasonable values and demonstrated a coarsening mechanism involving the intermediate zone around the shoreline under alternating wave and wind actions as a result of which coarse sand was transported toward the seaward part of the backshore by large waves during storms and then toward the landward part by strong onshore winds. The 5-year backshore coarsening is most certainly explained by repetition of short-term coarsening mechanisms caused by wave-induced sand transport occurring from the nearshore to the intermediate zone. Copyright © 2010 John Wiley & Sons, Ltd [source]


Evaluating acute toxicity of methyl parathion application in constructed wetland mesocosms,

ENVIRONMENTAL TOXICOLOGY, Issue 5 2004
C. D. Milam
Abstract Wetland ecosystems have reduced ambient levels of various organic and metallic compounds, although their effectiveness on agricultural pesticides is not well documented. Five stations within each of two 10 × 50 m constructed wetlands (two vegetated, two nonvegetated) were selected to measure the fate and effects of methyl parathion (MeP). Following a simulated storm event (0.64 cm of rainfall), aqueous, sediment, and plant samples were collected and analyzed spatially (5, 10, 20, and 40 m from the inlet) and temporally (after 3,10 days) for MeP concentrations and for the impact of those concentrations on the aquatic fauna. Aqueous toxicity to fish decreased spatially and temporally in the vegetated mesocosm. Pimephales promelas survival was significantly reduced, to 68%, at the 10-m station of the nonvegetated wetlands (3 h postapplication), with pesticide concentrations averaging 9.6 ,g MeP/L. Ceriodaphnia in both the vegetated and nonvegetated wetlands was sensitive (i.e., a significant acute response to MeP occurred) to pesticide concentrations through 10 days postapplication. Mean MeP concentrations in water ranged from 0.5 to 15.4 ,g/L and from 0.1 to 27.0 ,g/L in the vegetated and nonvegetated wetlands, respectively. Hyalella azteca aqueous tests resulted in significant mortality in the 5-m vegetated segment 10 days after exposure to MeP (2.2 ,g/L). Solid-phase (10-day) sediment toxicity tests showed no significant reduction in Chironomus tentans survival or growth, except for the sediments sampled 3 h postapplication in the nonvegetated wetland (65% survival). Thereafter, midge survival averaged >87% in sediments sampled from both wetlands. These data suggest that wetlands play a significant role in mitigating the effect of MeP exposure in sensitive aquatic biota. © 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 471,479, 2004. [source]


Organophosphorus pesticides in storm-water runoff from southern California (USA)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2004
Kenneth Schiff
Abstract Large quantities of the organophosphorus (OP) pesticides diazinon and chlorpyrifos are applied to California (USA) watersheds every year, but few data are available on the sources of OP pesticides in urban watersheds. The goal of this study was to characterize diazinon and chlorpyrifos concentrations from different land uses indicative of source categories in urban southern California watersheds. This characterization included analysis of 128 runoff samples from eight different land uses over five storm events. Diazinon was consistently detected (93% of samples) during this study, whereas chlorpyrifos was not consistently detected (12% of samples). The mixed agricultural land use had the highest flow weighted mean (FWM) concentration of diazinon (4,076 ng/L), which exceeded the next-highest land-use categories (commercial and residential) by one to two orders of magnitude (324,99 ng/L, respectively). Open space had the lowest concentration of diazinon (<20 ng/L). Concentrations of diazinon at replicate land-use sites and during replicate storm events at the same site were highly variable. The difference in diazinon FWM concentrations among replicate sites ranged from 1.5-fold to 45-fold. The difference in diazinon FWM concentrations among storms at the same site ranged from 1.25-fold to 30-fold. Part of this variability is a response to the temporal patterns observed within a storm event. The majority of land-use site-events had peak concentrations before peak flow indicating a first-flush effect, but this was not always a predictable temporal trend. The first-flush effect was rarely evident in terms of mass loadings because flows can range orders of magnitude during a single event in highly impervious urban watersheds. Flow variability thus overwhelms the variability in diazinon concentrations attributable to the first-flush effect. [source]


Quantifying the impact of soil water repellency on overland flow generation and erosion: a new approach using rainfall simulation and wetting agent on in situ soil

HYDROLOGICAL PROCESSES, Issue 17 2007
G. Leighton-Boyce
Abstract The conventional view of soil water repellency is that it promotes overland flow and soil erosion, but this is not always borne out by observations. This study aimed to isolate the effects of repellency on long-unburnt and recently burnt terrain on infiltration, overland flow and erosion at the small plot scale (0·36 m2). Rainfall simulations (30 min; intensity 100 mm h,1), using untreated water, and water treated with surfactants to eliminate repellency, were conducted on in situ repellent soils in fire-prone Eucalyptus globulus plantations, north-central Portugal at (i) a long-unburnt site with and without litter, and (ii) a recently burnt site. On long-unburnt terrain, the mean overland flow coefficient (33%) was 16 times higher and mean slopewash was 23 times higher under repellent compared with wettable conditions. On recently burnt terrain, no overland flow was recorded under wettable conditions, while under repellent conditions the mean coefficient was 70%. The water storage capacity of the litter layer under 10-year-old eucalyptus stands for dry antecedent conditions was at least 3 mm water depth per cm litter depth, implying at least a delay to the onset of overland flow. Severe repellency (36% ethanol) was found to persist through a 30-min storm (100 mm h,1) when a litter layer was present. A continuous wetting front was observed in the upper ,1 cm of exposed soil, indicating a breakdown in repellency at the time of observation. Below ,1 cm, repellent, dry soil conditions generally persisted through the simulated storm event. A major implication is that prediction of hydrological impacts of repellency must also take into account the infiltration characteristics of any litter layer and any non-repellent soils, if present. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Defining hydrochemical evolution of streamflow through flowpath dynamics in Kawakami headwater catchment, Central Japan

HYDROLOGICAL PROCESSES, Issue 10 2005
Kasdi Subagyono
Abstract The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21,22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first-order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end-member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Heavy metal concentrations during storm events in a rehabilitated industrialized catchment

HYDROLOGICAL PROCESSES, Issue 10 2003
W. H. Blake
Abstract Water quality data collected on a fortnightly or monthly basis are inadequate for assessment and modelling of many water quality problems as storm event samples are underrepresented or missed. This paper examines the stormflow dynamics of heavy metals (Pb, Cu, Cd and Zn) in the Nant-y-Fendrod stream, South Wales, which has been affected by 250 years of metal smelting, followed by 35 years of landscape rehabilitation measures. For storm events of contrasting (very dry and very wet) antecedent conditions in May 2000 and February 2001, respectively, temporal changes in streamwater heavy metal concentrations above and below an in-line flood detention lake are analysed. At the upstream site, peaks in total metal concentration were recorded on the rising limb for Pb (0·150 mg l,1) and Cu (0·038 mg l,1) but on the falling limb for Zn (1·660 mg l,1) and Cd (0·006 mg l,1) in the summer 2000 storm event, yielding clockwise and anticlockwise hysteretic loops respectively. In contrast, metal concentrations, although high throughout the winter storm event, were diluted somewhat during the storm peak itself. The Pb and Cu appear to be supplied by quickflow processes and transported in close association with fine sediment, whereas Zn and Cd are delivered to the channel and lake by slower subsurface seepage in dissolved form. In the winter 2001 event, antecedent soil moisture and shallow groundwater levels were anomalously high and seepage sources of dissolved metals dominated. Downstream of the lake, Pb and Cu levels and suspended sediment were high in the summer storm, but low in the winter storm, suggesting retention with deposition of fine sediment in the lake during the latter. In the winter storm, Zn and Cd levels were higher downstream than upstream of the lake, perhaps because of additional seepage inputs from the surrounding slopes, which failed to have an impact during summer. An understanding of the complex interplay of antecedent soil moisture and the dynamics of subsurface seepage pathways in relation to the three-dimensional distribution of sources is important in modelling heavy metal fluxes and levels in contaminated urban catchments. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Rainfall effects on rare annual plants

JOURNAL OF ECOLOGY, Issue 4 2008
Jonathan M. Levine
Summary 1Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood. 2We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future. 3Species showed 9 to 100-fold between-year variation in plant density over the 5,12 years of censusing, including a severe drought and a wet El Niño year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants. 4Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect. 5Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life table response experiments indicated that variation in germination has the same potential as the seeds produced per germinant to drive variation in population growth rates, but only the former was clearly related to rainfall. 6Synthesis. Our work suggests that future changes in the timing and temperatures associated with the first major rains, acting through germination, may more strongly affect population persistence than changes in season-long rainfall. [source]


Turbid flow through a tropical reservoir (Lake Dalrymple, Queensland, Australia): Responses to a summer storm event

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 4 2000
John W. Faithful
Abstract The first flood event following a prolonged dry period is described for an impoundment, Lake Dalrymple, in tropical north-eastern Australia. The event, in January 1996, generated substantial flow in the two main inflow sources: the Burdekin River from the north and the Suttor River from the south. Flow through the Burdekin River peaked early and then subsided to a lower level, but flow through the Suttor River persisted at a moderate level for over 15 days after the initial inflow. An extensive water quality survey was conducted on 16 January 1996 (seven days after the initial dam overflow) to determine the nature of the inflows originating from the two major subcatchments feeding the reservoir as they entered and passed through the impoundment. The inflow comprising waters of high turbidity and low conductivity occupied the mid-column region along the two major inflow channels through the impoundment to the dam wall. The suspended particulate material in the form of silt and clay sized particles remained in suspension as the flow passed through the reservoir, due in part to the low ionic strength of the inflow and the relative densities of the inflowing and receiving waters. For both river sources, more than 50% of the total nitrogen and almost all of the total phosphorus were bound to the suspended particulate matter. Much of this was exported in the flow over the spillway. The highly turbid nature of the inflow resulted in strong attenuation of down-welling photosynthetically active radiation (up to maximum attenuation values of 12.24 m,1 in the reservoir where the euphotic depth was only 0.38 m). The irradiance reflectance and the scattering coefficient were considerably higher than any reported for other Australian inland waters. Concentrations of viable chlorophyll a in the surface waters were very low (maximum value 3.4 ,g L,1) because of the highly turbid conditions and extensive dilution by the inflow. The results of this study provide an example of the significant impact a large inflow of turbid, low conductance water can have on a large reservoir in the arid tropics following a prolonged dry period. During inflow events such as the one described in this paper, the reservoir becomes riverine in nature, and large amounts of suspended particulate matter and associated nutrients are transported through the reservoir. [source]


Backshore coarsening processes triggered by wave-induced sand transport: the critical role of storm events,

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2010
Keiko Udo
Abstract Spatial backshore processes were investigated through field observations of topography and median sand grain size at a sandy beach facing the Pacific Ocean in Japan. A comparison of the backshore profile and cross-shore distribution of the median sand grain size in 1999 and 2004 revealed an unusual sedimentary process in which sand was coarsened in a depositional area in the 5-year period, although sediment is generally coarsened in erosional areas. In support of these observations, monthly spatial field analyses carried out in 2004 demonstrated a remarkable backshore coarsening process triggered by sedimentation in the seaward part of the backshore during a storm event. In order to elucidate mechanisms involved in the backshore coarsening process, thresholds of movable sand grain size under wave and wind actions (a uniform parameter for both these cases) in the onshore and offshore directions were estimated using wave, tide, and wind data. The cross-shore distributions of the estimated thresholds provided reasonable values and demonstrated a coarsening mechanism involving the intermediate zone around the shoreline under alternating wave and wind actions as a result of which coarse sand was transported toward the seaward part of the backshore by large waves during storms and then toward the landward part by strong onshore winds. The 5-year backshore coarsening is most certainly explained by repetition of short-term coarsening mechanisms caused by wave-induced sand transport occurring from the nearshore to the intermediate zone. Copyright © 2010 John Wiley & Sons, Ltd [source]


Sensitivity of post-hurricane beach and dune recovery to event frequency

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2009
Chris Houser
Abstract The recovery of Santa Rosa Island in northwest Florida is characterized following Hurricane Katrina (September 2005), which was preceded by Hurricanes Ivan (2004) and Dennis (2005). Beach and dune recovery were quantified to the east and west of Pensacola Beach through a comparison of LiDAR data collected immediately following Hurricane Katrina and in July 2006 after almost a year of recovery. East of Pensacola Beach (the Santa Rosa Unit), the shoreline retreated by an average of 64 m during the 2004,2005 hurricane season and recovered by an average of 19 m. To the west of Pensacola Beach (the Fort Pickens Unit), the shoreline retreated by an average of 30 m, and while no significant shoreface recovery was observed, the presence of vegetation on low-profile dunes promoted backshore accretion. It is found that beachface recovery in the Santa Rosa Unit and backshore accretion in the Fort Pickens Unit occurred at the widest sections of the island where the pre-storm profile volume had been relatively large and overwash penetration was at a minimum. The narrow sections of the island (between cuspate headlands) had a smaller profile volume before the storms, leading to greater overwash penetration and in some cases island breaching in both sections, which limited the volume of sediment available for shoreface recovery. The alongshore variation in recovery is not only related to the island width, but also the offshore bathymetry, height of the pre-storm dunes and the overwash penetration. If sufficient time is allowed for the return of vegetation and the recovery of the dunes, the variations in storm impact observed during Hurricane Ivan will be reinforced during subsequent storms. In this respect, the level of impact during subsequent storms and the ability of the island to recover will depend on the frequency of storm events. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Daily to seasonal cross-shore behaviour of quasi-persistent intertidal beach morphology

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2007
S. Quartel
Abstract In this study, an intertidal bar and trough system on the beach of Noordwijk, The Netherlands was monitored over a 15-month period in order to examine the daily to seasonal sequential cross-shore behaviour and to establish which conditions force or interrupt this cyclic bar behaviour. The beach morphology (bars and troughs) was classified from low-tide Argus video images based on surface composition. From the classified images, time series of the landward boundary of the bar and of the trough were extracted. The time series of the alongshore-averaged boundary positions described sawtooth motion with a period between 1 and 4 months, comprising gradual landward migration followed by abrupt seaward shifts. The abrupt seaward shift appeared to be a morphological reset induced by storm events, which lasted at least 30 h with a large average root-mean-square wave height (,2 m) and offshore surge level (,0·5 m), and a small trough (<20 m wide) in the pre-storm beach morphology. The time series of the boundary positions exhibited very little longer (seasonal) scale variability, but somewhat larger smaller (daily) scale variability. The bar boundary was found to be more dynamic than the trough boundary. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2003
M. Casadei
Abstract The growing availability of digital topographic data and the increased reliability of precipitation forecasts invite modelling efforts to predict the timing and location of shallow landslides in hilly and mountainous areas in order to reduce risk to an ever-expanding human population. Here, we exploit a rare data set to develop and test such a model. In a 1·7 km2 catchment a near-annual aerial photographic coverage records just three single storm events over a 45 year period that produced multiple landslides. Such data enable us to test model performance by running the entire rainfall time series and determine whether just those three storms are correctly detected. To do this, we link a dynamic and spatially distributed shallow subsurface runoff model (similar to TOPMODEL) to an in,nite slope model to predict the spatial distribution of shallow landsliding. The spatial distribution of soil depth, a strong control on local landsliding, is predicted from a process-based model. Because of its common availability, daily rainfall data were used to drive the model. Topographic data were derived from digitized 1 : 24 000 US Geological Survey contour maps. Analysis of the landslides shows that 97 occurred in 1955, 37 in 1982 and ,ve in 1998, although the heaviest rainfall was in 1982. Furthermore, intensity,duration analysis of available daily and hourly rainfall from the closest raingauges does not discriminate those three storms from others that did not generate failures. We explore the question of whether a mechanistic modelling approach is better able to identify landslide-producing storms. Landslide and soil production parameters were ,xed from studies elsewhere. Four hydrologic parameters characterizing the saturated hydraulic conductivity of the soil and underlying bedrock and its decline with depth were ,rst calibrated on the 1955 landslide record. Success was characterized as the most number of actual landslides predicted with the least amount of total area predicted to be unstable. Because landslide area was consistently overpredicted, a threshold catchment area of predicted slope instability was used to de,ne whether a rainstorm was a signi,cant landslide producer. Many combinations of the four hydrological parameters performed equally well for the 1955 event, but only one combination successfully identi,ed the 1982 storm as the only landslide-producing storm during the period 1980,86. Application of this parameter combination to the entire 45 year record successfully identi,ed the three events, but also predicted that two other landslide-producing events should have occurred. This performance is signi,cantly better than the empirical intensity,duration threshold approach, but requires considerable calibration effort. Overprediction of instability, both for storms that produced landslides and for non-producing storms, appears to arise from at least four causes: (1) coarse rainfall data time scale and inability to document short rainfall bursts and predict pressure wave response; (2) absence of local rainfall data; (3) legacy effect of previous landslides; and (4) inaccurate topographic and soil property data. Greater resolution of spatial and rainfall data, as well as topographic data, coupled with systematic documentation of landslides to create time series to test models, should lead to signi,cant improvements in shallow landslides forecasting. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Organophosphorus pesticides in storm-water runoff from southern California (USA)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2004
Kenneth Schiff
Abstract Large quantities of the organophosphorus (OP) pesticides diazinon and chlorpyrifos are applied to California (USA) watersheds every year, but few data are available on the sources of OP pesticides in urban watersheds. The goal of this study was to characterize diazinon and chlorpyrifos concentrations from different land uses indicative of source categories in urban southern California watersheds. This characterization included analysis of 128 runoff samples from eight different land uses over five storm events. Diazinon was consistently detected (93% of samples) during this study, whereas chlorpyrifos was not consistently detected (12% of samples). The mixed agricultural land use had the highest flow weighted mean (FWM) concentration of diazinon (4,076 ng/L), which exceeded the next-highest land-use categories (commercial and residential) by one to two orders of magnitude (324,99 ng/L, respectively). Open space had the lowest concentration of diazinon (<20 ng/L). Concentrations of diazinon at replicate land-use sites and during replicate storm events at the same site were highly variable. The difference in diazinon FWM concentrations among replicate sites ranged from 1.5-fold to 45-fold. The difference in diazinon FWM concentrations among storms at the same site ranged from 1.25-fold to 30-fold. Part of this variability is a response to the temporal patterns observed within a storm event. The majority of land-use site-events had peak concentrations before peak flow indicating a first-flush effect, but this was not always a predictable temporal trend. The first-flush effect was rarely evident in terms of mass loadings because flows can range orders of magnitude during a single event in highly impervious urban watersheds. Flow variability thus overwhelms the variability in diazinon concentrations attributable to the first-flush effect. [source]


Topographic controls on shallow groundwater dynamics: implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchment

HYDROLOGICAL PROCESSES, Issue 16 2010
J. M. Detty
Abstract Hydrologic connectivity is regarded as one of the key controls in determining catchment rainfall,run-off response and has been linked to the export of solutes from uplands to streams. We sought to identify the patterns of hydrologic connectivity within a small forested watershed by monitoring the shallow groundwater fluctuations of simple topographically defined landform sequences (footslope,backslope,shoulder). A spatially distributed instrument network was employed to continuously measure hydrometric responses of the shallow subsurface during seasonal wet-up from summer through winter in a small till mantled research catchment. We demonstrate that the spatial patterns of shallow water table extent and duration, and therefore hydrologic connectivity, had a strong seasonal signature. During the low antecedent soil moisture conditions typically associated with the growing season, water tables were patchy, discontinuous, and only the wettest near-stream footslope areas were consistently hydrologically connected with the stream network. During the dormant season, footslopes and backslopes maintained water tables that persisted between storm events and were almost continuously connected with the stream network. In the largest storm events, the typically driest landforms (shoulder slopes) established shallow transient water tables, suggesting that nearly the entire catchment was temporarily hydrologically connected with the stream network. In addition, we found significant differences (p < 0·05) in the magnitude and duration of groundwater responses to rainfall among landform groups both seasonally and during events. These results have implications for using a similarity approach in representing characteristic hydrologic responses of topographically defined watershed elements, determining hydrologic connectivity between watershed elements, as well as for understanding solute transport in catchments. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Suspended-sediment sources in an urban watershed, Northeast Branch Anacostia River, Maryland

HYDROLOGICAL PROCESSES, Issue 11 2010
Olivia H. Devereux
Abstract Fine sediment sources were characterized by chemical composition in an urban watershed, the Northeast Branch Anacostia River, which drains to the Chesapeake Bay. Concentrations of 63 elements and two radionuclides were measured in possible land-based sediment sources and suspended sediment collected from the water column at the watershed outlet during storm events. These tracer concentrations were used to determine the relative quantity of suspended sediment contributed by each source. Although this is an urbanized watershed, there was not a distinct urban signature that can be evaluated except for the contributions from road surfaces. We identified the sources of fine sediment by both physiographic province (Piedmont and Coastal Plain) and source locale (streambanks, upland and street residue) by using different sets of elemental tracers. The Piedmont contributed the majority of the fine sediment for seven of the eight measured storms. The streambanks contributed the greatest quantity of fine sediment when evaluated by source locale. Street residue contributed 13% of the total suspended sediment on average and was the source most concentrated in anthropogenically enriched elements. Combining results from the source locale and physiographic province analyses, most fine sediment in the Northeast Branch watershed is derived from streambanks that contain sediment eroded from the Piedmont physiographic province of the watershed. Sediment fingerprinting analyses are most useful when longer term evaluations of sediment erosion and storage are also available from streambank-erosion measurements, sediment budget and other methods. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Dynamics of stream nitrate sources and flow pathways during stormflows on urban, forest and agricultural watersheds in central Pennsylvania, USA

HYDROLOGICAL PROCESSES, Issue 23 2009
Anthony R. Buda
Abstract Understanding the influence of storm events on nitrate (NO3,) dynamics is important for efficiently managing NO3, pollution. In this study, five sites representing a downstream progression of forested uplands underlain by resistant sandstone to karst lowlands with agricultural, urban and mixed land-use were established in Spring Creek, a 201 km2 mixed land-use watershed in central Pennsylvania, USA. At each site, stream water was monitored during six storm events in 2005 to assess changes in stable isotopes of NO3, (,15N-NO3, and ,18O-NO3,) and water (,18O-H2O) from baseflow to peakflow. Peakflow fractions of event NO3, and event water were then computed using two-component mixing models to elucidate NO3, flow pathway differences among the five sites. For the forested upland site, storm size appeared to affect NO3, sources and flow pathways. During small storms (<35 mm rainfall), greater event NO3, fractions than event water fractions indicated the prevalence of atmospheric NO3, source contributions at peakflow. During larger storms (>35 mm rainfall), event NO3, fractions were less than event water fractions at peakflow suggesting that NO3, was flushed from stored sources via shallow subsurface flow pathways. For the urbanized site, wash-off of atmospheric NO3, was an important NO3, source at peakflow, especially during short-duration storms where event water contributions indicated the prevalence of overland flow. In the karst lowlands, very low fractions of event water and even lower fractions of event NO3, at peakflow suggested the dominance of ground water flow pathways during storms. These ground water flow pathways likely flushed stored NO3, sources into the stream, while deep soils in the karst lowlands also may have promoted NO3, assimilation. The results of this study illustrated how NO3, isotopes and ,18O-H2O could be combined to show key differences in water and NO3, delivery between forested uplands, karst valleys and fully urbanized watersheds. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Post-wildfire changes in suspended sediment rating curves: Sabino Canyon, Arizona

HYDROLOGICAL PROCESSES, Issue 11 2007
Sharon L. E. Desilets
Abstract Wildfire has been shown to increase erosion by several orders of magnitude, but knowledge regarding short-term variations in post-fire sediment transport processes has been lacking. We present a detailed analysis of the immediate post-fire sediment dynamics in a semi-arid basin in the southwestern USA based on suspended sediment rating curves. During June and July 2003, the Aspen Fire in the Coronado National Forest of southern Arizona burned an area of 343 km2. Surface water samples were collected in an affected watershed using an event-based sampling strategy. Sediment rating parameters were determined for individual storm events during the first 18 months after the fire. The highest sediment concentrations were observed immediately after the fire. Through the two subsequent monsoon seasons there was a progressive change in rating parameters related to the preferential removal of fine to coarse sediment. During the corresponding winter seasons, there was a lower supply of sediment from the hillslopes, resulting in a time-invariant set of sediment rating parameters. A sediment mass-balance model corroborated the physical interpretations. The temporal variability in the sediment rating parameters demonstrates the importance of storm-based sampling in areas with intense monsoon activity to characterize post-fire sediment transport accurately. In particular, recovery of rating parameters depends on the number of high-intensity rainstorms. These findings can be used to constrain rapid assessment fire-response models for planning mitigation activities. Copyright © 2006 John Wiley & Sons, Ltd. [source]


First-year post-fire erosion rates in Bitterroot National Forest, Montana,

HYDROLOGICAL PROCESSES, Issue 8 2007
Kevin M. Spigel
Abstract Accelerated runoff and erosion commonly occur following forest fires due to combustion of protective forest floor material, which results in bare soil being exposed to overland flow and raindrop impact, as well as water repellent soil conditions. After the 2000 Valley Complex Fires in the Bitterroot National Forest of west-central Montana, four sets of six hillslope plots were established to measure first-year post-wildfire erosion rates on steep slopes (greater than 50%) that had burned with high severity. Silt fences were installed at the base of each plot to trap eroded sediment from a contributing area of 100 m2. Rain gauges were installed to correlate rain event characteristics to the event sediment yield. After each sediment-producing rain event, the collected sediment was removed from the silt fence and weighed on site, and a sub-sample taken to determine dry weight, particle size distribution, organic matter content, and nutrient content of the eroded material. Rainfall intensity was the only significant factor in determining post-fire erosion rates from individual storm events. Short duration, high intensity thunderstorms with a maximum 10-min rainfall intensity of 75 mm h,1 caused the highest erosion rates (greater than 20 t ha,1). Long duration, low intensity rains produced little erosion (less than 0·01 t ha,1). Total C and N in the collected sediment varied directly with the organic matter; because the collected sediment was mostly mineral soil, the C and N content was small. Minimal amounts of Mg, Ca, and K were detected in the eroded sediments. The mean annual erosion rate predicted by Disturbed WEPP (Water Erosion Prediction Project) was 15% less than the mean annual erosion rate measured, which is within the accuracy range of the model. Published in 2007 by John Wiley & Sons, Ltd. [source]


The impact of storm events on solute exports from a glaciated forested watershed in western New York, USA

HYDROLOGICAL PROCESSES, Issue 16 2006
S. P. Inamdar
Abstract This study analysed the importance of precipitation events from May 2003 to April 2004 on surface water chemistry and solute export from a 696 ha glaciated forested watershed in western New York State, USA. The specific objectives of the study were to determine: (a) the temporal patterns of solutes within individual storm events; (b) the impact of precipitation events on seasonal and annual export budgets; and (c) how solute concentrations and loads varied for precipitation events among seasons as functions of storm intensity and antecedent moisture conditions. Analysis of solute trajectories showed that NH4+, total Al and dissolved organic nitrogen (DON) peaked on the hydrograph rising limb, whereas dissolved organic carbon (DOC) concentrations peaked following the discharge peak. Sulphate and base-cations displayed a dilution pattern with a minimum around peak discharge. End-member mixing analysis showed that throughfall contributions were highest on the rising limb, whereas valley-bottom riparian waters peaked following the discharge peak. The trajectories of NO3, concentrations varied with season, indicating the influence of biotic processes on the generation, and hence flux, of this solute. Storm events had the greatest impact on the annual budgets for NH4+, K+, total dissolved Al, DON and DOC. Storm events during summer had the greatest impact on seasonal solute budgets. Summer events had the highest hourly discharges and high concentrations of solutes. However, NO3, and DOC exports during a spring snowmelt event were considerably more than those observed for large events during other periods of the year. Comparisons among storms showed that season, precipitation amount, and antecedent moisture conditions affected solute concentrations and loads. Concentrations of solutes were elevated for storms that occurred after dry antecedent conditions. Seven of the largest storms accounted for only 15% of the annual discharge, but were responsible for 34%, 19%, 64%, 13%, 39% and 24% of the annual exports of NH4+, K+, Al, NO3,, DON and DOC respectively. These results suggest that the intense and infrequent storms predicted for future climate-change scenarios will likely increase the exports of solutes like DOC, DON, NH4+, Al and K+ from watersheds. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Hillslope-swamp interactions and flow pathways in a hypermaritime rainforest, British Columbia

HYDROLOGICAL PROCESSES, Issue 15 2003
D. F. Fitzgerald
Abstract The process of water delivery to a headwater stream in a hypermaritime rainforest was examined using a variety of physical techniques and tracing with dissolved organic carbon (DOC) and the stable isotopes of water. Headwater swamps, often the major discharge zones for water draining off steep forest slopes, strongly affect the physical and chemical character of streamflow in the region. The headwater swamp selected for detailed investigation was sustained by relatively constant groundwater input from the steep colluvial slopes that maintained the water table above the ground surface. During significant storm events the water table rose quickly and the swamp expanded to engulf marginal pools that developed rapidly on the adjacent ground surfaces. The corresponding release of surface water directly to the stream typically comprised up to 95% of total stream discharge. The proportion of groundwater seepage to the stream by matrix flow (<1%) and via macropore-fed springs (up to 73%) increased during the recession period, but could not be sustained over the longer term. In more protracted drying periods, deep groundwater contributions to the stream were routed first to the headwater swamp. Dissolved organic carbon (DOC) in the stream, measured daily or more frequently during storm events, was found to be directly proportional to discharge, owing to the domination of DOC-rich headwater-swamp water sources. Although ,18O and ,2H composition of rainwater, groundwater and stream flow were found to be similar, deuterium excess (d ,2H , 8,18O) of water components was often found to be distinct, and suggested short water residence times of roughly 12 days for one event. Overall, observations of a typical headwater swamp reveal that the groundwater regime is dominated by rapid infiltration and short, emergent flow paths. With a relatively short turnover time, potential disturbances to the system by harvesting of upslope areas can be expected to occur rapidly. Forest managers can mitigate some of the harmful effects of logging operations by respecting the integrity of headwater wetland systems. The nature and magnitude of such perturbations will require further study. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Heavy metal concentrations during storm events in a rehabilitated industrialized catchment

HYDROLOGICAL PROCESSES, Issue 10 2003
W. H. Blake
Abstract Water quality data collected on a fortnightly or monthly basis are inadequate for assessment and modelling of many water quality problems as storm event samples are underrepresented or missed. This paper examines the stormflow dynamics of heavy metals (Pb, Cu, Cd and Zn) in the Nant-y-Fendrod stream, South Wales, which has been affected by 250 years of metal smelting, followed by 35 years of landscape rehabilitation measures. For storm events of contrasting (very dry and very wet) antecedent conditions in May 2000 and February 2001, respectively, temporal changes in streamwater heavy metal concentrations above and below an in-line flood detention lake are analysed. At the upstream site, peaks in total metal concentration were recorded on the rising limb for Pb (0·150 mg l,1) and Cu (0·038 mg l,1) but on the falling limb for Zn (1·660 mg l,1) and Cd (0·006 mg l,1) in the summer 2000 storm event, yielding clockwise and anticlockwise hysteretic loops respectively. In contrast, metal concentrations, although high throughout the winter storm event, were diluted somewhat during the storm peak itself. The Pb and Cu appear to be supplied by quickflow processes and transported in close association with fine sediment, whereas Zn and Cd are delivered to the channel and lake by slower subsurface seepage in dissolved form. In the winter 2001 event, antecedent soil moisture and shallow groundwater levels were anomalously high and seepage sources of dissolved metals dominated. Downstream of the lake, Pb and Cu levels and suspended sediment were high in the summer storm, but low in the winter storm, suggesting retention with deposition of fine sediment in the lake during the latter. In the winter storm, Zn and Cd levels were higher downstream than upstream of the lake, perhaps because of additional seepage inputs from the surrounding slopes, which failed to have an impact during summer. An understanding of the complex interplay of antecedent soil moisture and the dynamics of subsurface seepage pathways in relation to the three-dimensional distribution of sources is important in modelling heavy metal fluxes and levels in contaminated urban catchments. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Quantitative evaluation of strategies for erosion control on a railway embankment batter

HYDROLOGICAL PROCESSES, Issue 17 2001
Y. Gyasi-Agyei
Abstract Strategies for erosion control on a railway embankment batter (side slope) are quantitatively evaluated in this paper. The strategies were centred on control (,do nothing' treatment), grass seeding, gypsum application, jute mat (an erosion control blanket) placement and planting hedgerows of Monto vetiver grass. Rainfall and runoff were monitored at 1 min intervals on 10 m wide embankment batter plots during 1998 and 1999. Total bedload and suspended sediment eroded from the plots were also measured but only for a group of storm events within sampling intervals. It has been demonstrated that vetiver grass is not cost-effective in controlling erosion on railway batters within Central Queensland region. Seeding alone could cause 60% reduction in the erosion rate compared with the control treatment. Applying gypsum to the calcium-deficient soil before seeding yielded an additional 25% reduction in the erosion rate. This is the result, primarily, of 100% grass cover establishment within seven months of sowing. Therefore, for railway embankment batter erosion control, the emphasis needs to be on rapid establishment of 100% grass cover. For rapid establishment of grass cover, irrigation is necessary during the initial stages of growth as the rainfall is unpredictable and the potential evaporation exceeds rainfall in the study region. The risk of seeds and fertilizers being washed out by short-duration and high-intensity rainfall events during the establishment phase may be reduced by the use of erosion control blankets on sections of the batters. Accidental burning of grasses on some plots caused serious erosion problems, resulting in very slow recovery of grass growth. It is therefore recommended that controlled burning of grasses on railway batters should be avoided to protect batters from being exposed to severe erosion. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Topographic controls on the chemistry of subsurface stormflow

HYDROLOGICAL PROCESSES, Issue 10 2001
Daniel L. Welsch
Abstract Models are needed that describe how topography and other watershed characteristics affect the chemical composition of runoff waters, yet little spatially distributed data exist to develop such models. A topographically driven flushing mechanism for nitrate (NO3,) and dissolved organic carbon has been described in recent literature; however, this mechanism has not yet been thoroughly tested. A 24 ha catchment in the Catskill Mountains of New York was clearcut in the winter of 1996,97, resulting in elevated NO3, concentrations in soil water, groundwater and streamflow. We sampled shallow subsurface stormflow (SSSF) and streamflow six times during the spring and summer of 1998, 1 year after the harvest. We used a spatially distributed network of piezometers to investigate the relationship between topography and SSSF chemistry. Several indices of topography were computed, including the commonly employed topographic index of Beven and Kirkby (1979; Hydrological Sciences Bulletin24: 43,69). Topographic index was positively correlated with NO3, concentrations in SSSF. The strength of the NO3,,topography relationship was best explained by antecedent soil temperature and antecedent precipitation conditions. Results suggest a topographically driven flushing of high NO3, shallow soil at the site during storm events. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Statistical simulation of flood variables: incorporating short-term sequencing

JOURNAL OF FLOOD RISK MANAGEMENT, Issue 1 2008
Y. Cai
Abstract The pluvial and fluvial flooding in the United Kingdom over the summer of 2007 arose as a result of anomalous climatic conditions that persisted for over a month. Gaining an understanding of the sequencing of storm events and representing their characteristics within flood risk analysis is therefore of importance. This paper provides a general method for simulating univariate time series data, with a given marginal extreme value distribution and required autocorrelation structure, together with a demonstration of the method with synthetic data. The method is then extended to the multivariate case, where cross-variable correlations are also represented. The multivariate method is shown to work well for a two-variable simulation of wave heights and sea surges at Lerwick. This work was prompted by an engineering need for long time series data for use in continuous simulation studies where gradual deterioration is a contributory factor to flood risk and potential structural failure. [source]


A Statistical Sediment Yield Prediction Model Incorporating the Effect of Fires and Subsequent Storm Events,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2008
Jang Hyuk Pak
Abstract:, Alluvial fans are continuously being developed for residential, industrial, commercial, and agricultural uses in southern California. Development and alteration of alluvial fans need to consider the possibility of mud and debris flows from upstream mountain watersheds affected by fires. Accurate prediction of sediment yield (or hyper-concentrated sediment yield) is essential for the design, operation, and maintenance of debris basins to safeguard properly the general populace. This paper presents a model for the prediction of sediment yields that result from a combination of fire and subsequent storm events. The watersheds used in this analysis are located in the foothills of the San Gabriel Mountains in southern California. A multiple regression analysis is first utilized to establish a fundamental statistical relationship for sediment yield as a function of relief ratio, drainage area, maximum 1-h rainfall intensity and fire factor using 45 years of data (1938-1983). In addition, a method for multi-sequence sediment yield prediction under fire conditions was developed and calibrated using 17 years of sediment yield, fire, and precipitation data for the period 1984-2000. After calibration, this model was verified by applying it to provide a prediction of the sediment yields for the 2001-2002 fire events in southern California. The findings indicate a strong correlation between the estimated and measured sediment yields. The proposed method for sequence sediment yield prediction following fire events can be a useful tool to schedule cleanout operations for debris basins and to develop an emergency response strategy for the southern California region where plentiful sediment supplies exist and frequent fires occur. [source]


APPLICATION OF GREY MODEL AND ARTIFICIAL NEURAL NETWORKS TO FLOOD FORECASTING,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2006
Moon Seong Rang
ABSTRACT: The main focus of this study was to compare the Grey model and several artificial neural network (ANN) models for real time flood forecasting, including a comparison of the models for various lead times (ranging from one to six hours). For hydrological applications, the Grey model has the advantage that it can easily be used in forecasting without assuming that forecast storm events exhibit the same stochastic characteristics as the storm events themselves. The major advantage of an ANN in rainfall-runoff modeling is that there is no requirement for any prior assumptions regarding the processes involved. The Grey model and three ANN models were applied to a 2,509 km2 watershed in the Republic of Korea to compare the results for real time flood forecasting with from one to six hours of lead time. The fifth-order Grey model and the ANN models with the optimal network architectures, represented by ANN1004 (34 input nodes, 21 hidden nodes, and 1 output node), ANN1010 (40 input nodes, 25 hidden nodes, and 1 output node), and ANN1004T (14 input nodes, 21 hidden nodes, and 1 output node), were adopted to evaluate the effects of time lags and differences between area mean and point rainfall. The Grey model and the ANN models, which provided reliable forecasts with one to six hours of lead time, were calibrated and their datasets validated. The results showed that the Grey model and the ANN1010 model achieved the highest level of performance in forecasting runoff for one to six lead hours. The ANN model architectures (ANN1004 and ANN1010) that used point rainfall data performed better than the model that used mean rainfall data (ANN1004T) in the real time forecasting. The selected models thus appear to be a useful tool for flood forecasting in Korea. [source]


Point and areal PMP estimates for durations of two and three days in India

METEOROLOGICAL APPLICATIONS, Issue 1 2000
P R Rakhecha
The risk of dam failure in India, coupled with better analysis of extreme storm events, has led to the estimation of revised one-day probable maximum precipitation (PMP). For some water conservation projects where the catchment area is very large, there is a need to have estimates of PMP for durations of both two and three days. These are provided in this paper. It was found that the two-day PMP over the Indian region varied from 100 cm over the central peninsula to over 290 cm in eastern India. For a duration of three days the corresponding values are 120 cm and 370 cm. For water management projects which include impounding reservoirs, an estimate has been made of the probable maximum flood (PMF) based on the new PMP estimates. The results of the design flood estimates were compared with existing estimates at the same sites and in most cases were found to be considerably higher. A comparison of the revised estimates of PMF and recorded floods in India shows that the trend of the rates of runoff in relation to catchment area differ by an average of 38% for an area of 1000 km2 and 46% for an area of 10 000 km2. These results show that some dams in India may be unsafe in the event of the probable maximum flood. Copyright © 2000 Royal Meteorological Society [source]