Home About us Contact | |||
Storage Organs (storage + organ)
Selected AbstractsRemoval of high-abundance proteins for nuclear subproteome studies in rice (Oryza sativa) endospermELECTROPHORESIS, Issue 3 2008Guosheng Li Abstract Endosperm is a highly specialized storage organ with three sets of genomes. It is one of the most economically important organs in plants. Endosperm development involves parental imprinting and endoreduplication. A thorough study of the endosperm proteome, particularly the nuclear proteome, may provide critical insight into the regulation of seed development. Unfortunately, endosperm is extremely rich in starch grains and protein bodies of different sizes, making proteome studies on nonstorage proteins, particularly the low-abundance proteins, very challenging. Here we have developed a chromatographic method to remove large starch grains and an electrophoresis method to recover low-abundance proteins, respectively. Using these methods, we have identified 468 proteins from the nuclear enriched fraction of rice endosperm, including transcription factors, histone modification proteins, kinetochore proteins, centromere/microtubule binding proteins, and transposon proteins. Among the 468 proteins, 208 (44%) are hypothetical proteins, indicating that the endosperm proteome is poorly explored. In addition, analyses of the MS/MS data using BioWorks 3.1 have identified 59 putative acetylated proteins and 40 putative methylated proteins. Our studies have developed a method to remove starch grains and recover low-abundance proteins, respectively. The methods should be applicable to other organisms. [source] Sperm transfer, sperm storage, and sperm digestion in the hermaphroditic land snail Succinea putris (Gastropoda, Pulmonata)INVERTEBRATE BIOLOGY, Issue 2 2009Lobke Dillen Abstract. Many hermaphroditic species are promiscuous, have a sperm digesting organ and an allosperm storage organ (i.e., spermatheca) with multiple compartments (i.e., spermathecal tubules) providing opportunities for sperm competition. The relative paternity of a sperm donor drives the evolution of mating behaviors that allow manipulation of the sperm receiver's reproductive behavior or physiology. We studied the relationship between sperm transfer, sperm storage, sperm digestion, and copulation duration in the hermaphroditic land snail Succinea putris, in which an active individual mates on top of a passive individual. Specifically, we examined (i) whether the entire copulation duration was required to complete reciprocal sperm transfer, (ii) sperm transfer patterns and their relationship with activity role, and (iii) the timing of sperm storage and sperm digestion. We found that reciprocal sperm transfer was completed within the first 5 h of copulation, which is ,2,3 h before the end of copulation. Sperm transfer was mainly sequential, meaning that one individual donated all his ejaculate before its partner started to reciprocate. The initiation of sperm transfer did not depend on the activity role. The presence of allosperm in the spermatheca before sperm transfer suggests that individuals remate before they are allosperm depleted. No sperm was digested during copulation but sperm digestion took place 0,72 h after copulation. Our results suggest that contact mate guarding is a likely manipulation strategy in S. putris, because partners cannot immediately remate. In addition, staying in copula after sperm transfer is completed seems to prevent the immediate digestion of sperm and therefore may promote sperm displacement and allosperm storage. [source] A panel of microsatellite markers to study sperm precedence patterns in the emperor dragonfly Anax imperator (Odonata: Anisoptera)MOLECULAR ECOLOGY RESOURCES, Issue 2 2007HEIKE HADRYS Abstract Odonates were the first group of organisms where sperm competition and last male sperm precedence have been identified. With the development of 10 microsatellites for the emperor dragonfly Anax imperator, the function and priority patterns of the multiple sperm storage organs of females can be studied and compared between species in natural populations. In addition, two microsatellite loci developed for the sister species Anax parthenope, are also highly polymorphic in A. imperator. For the presented 12 microsatellite loci, the number of alleles per locus ranged from two to 24. Observed heterozygosity ranged from 0.07 to 0.88. [source] Polycystins: what polycystic kidney disease tells us about spermMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004Abraham L. Kierszenbaum Abstract Experimental evidence indicates that the membrane-associated proteins polycystin-1 and polycystin-2 operate as a receptor-calcium channel complex that regulates signaling pathways essential for modulation of renal tubulogenesis. Polycystic kidney disease is characterized by defective renal tubular structure and results from mutations in either PKD1 or PKD2 genes. Recent data suggest that polycystin-1 and polycystin-2 might localize to primary cilium in principal cells of renal collecting tubules and are thought to act as mechanosensors of fluid flow and contents. Ciliary bending by fluid flow or mechanical stimulation induce Ca2+ release from intracellular stores, presumably to modulate ion influx in response to tubular fluid flow. Polycystins are also emerging as playing a significant role in sperm development and function. Drosophila polycystin-2 is associated with the head and tail of mature sperm. Targeted disruption of the PKD2 homolog results in nearly complete male sterility without disrupting spermatogenesis. Mutant sperm are motile but are unable to reach the female storage organs (seminal receptacles and spermathecae). The sea urchin polycystin-1-equivalent suPC2 colocalizes with the polycystin-1 homolog REJ3 to the plasma membrane over the acrosomal vesicle. This localization site suggests that the suPC2-REJ3 complex may function as a cation channel mediating acrosome reaction when sperm contact the jelly layer surrounding the egg at fertilization. Future studies leading to the identification of specific ligands for polycystins, including the signaling pathways, might define the puzzling relationship between renal tubular morphogenesis and sperm development and function. Mol. Reprod. Dev. 67: 385,388, 2004. © 2004 Wiley-Liss, Inc. [source] Shallow-water habitats as sources of fallback foods for homininsAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 4 2009Richard Wrangham Abstract Underground storage organs (USOs) have been proposed as critical fallback foods for early hominins in savanna, but there has been little discussion as to which habitats would have been important sources of USOs. USOs consumed by hominins could have included both underwater and underground storage organs, i.e., from both aquatic and terrestrial habitats. Shallow aquatic habitats tend to offer high plant growth rates, high USO densities, and relatively continuous USO availability throughout the year. Baboons in the Okavango delta use aquatic USOs as a fallback food, and aquatic or semiaquatic USOs support high-density human populations in various parts of the world. As expected given fossilization requisites, the African early- to mid-Pleistocene shows an association of Homo and Paranthropus fossils with shallow-water and flooded habitats where high densities of plant-bearing USOs are likely to have occurred. Given that early hominins in the tropics lived in relatively dry habitats, while others occupied temperate latitudes, ripe, fleshy fruits of the type preferred by African apes would not normally have been available year round. We therefore suggest that water-associated USOs were likely to have been key fallback foods, and that dry-season access to aquatic habitats would have been an important predictor of hominin home range quality. This study differs from traditional savanna chimpanzee models of hominin origins by proposing that access to aquatic habitats was a necessary condition for adaptation to savanna habitats. It also raises the possibility that harvesting efficiency in shallow water promoted adaptations for habitual bipedality in early hominins. Am J Phys Anthropol 140:630,642, 2009. © 2009 Wiley-Liss, Inc. [source] Changes in 13C/12C of oil palm leaves to understand carbon use during their passage from heterotrophy to autotrophy,RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 16 2009Emmanuelle Lamade The carbon isotope composition of leaf bulk organic matter was determined on the tropical tree Elaeis guineensis Jacq. (oil palm) in North Sumatra (Indonesia) to get a better understanding of the changes in carbon metabolism during the passage from heterotrophy to autotrophy of the leaves. Leaf soluble sugar (sucrose, glucose and fructose) contents, stomatal conductance and dark respiration, as well as leaf chlorophyll and nitrogen contents, were also investigated. Different growing stages were sampled from leaf rank ,6 to rank 57. The mean values for the ,13C of bulk organic matter were ,29.01,±,0.9, for the leaflets during the autotrophic stage, ,27.87,±,1.08, for the petioles and ,28.17,±,1.09, for the rachises, which are in the range of expected values for a C3 plant. The differences in ,13C among leaf ranks clearly revealed the changes in the origin of the carbon source used for leaf growth. Leaves were 13C-enriched at ranks below zero (around ,27,). During this period, the ,spear' leaves were completely heterotrophic and reserves from storage organs were mobilised for the growth of these young emerging leaves. 13C-depletion was then observed when the leaf was expanding at rank 1, and there was a continuous decrease during the progressive passage from heterotrophy until reaching full autotrophy. Thereafter, the ,13C remained more or less constant at around ,29.5,. Changes in sugar content and in ,13C related to leaf ranks showed an interesting similarity of the passage from heterotrophy to autotrophy of oil palm leaves to the budburst of some temperate trees or seed germination reported in the literature. Copyright © 2009 John Wiley & Sons, Ltd. [source] |